Skip to main content

Hydrology and Fluvial Morphology in Mountains: Those Special Rivers

  • Chapter
  • First Online:
Mountain Environments: Changes and Impacts

Abstract

The Earth's mountains behave as “water towers” [1–3], i.e., as regions receiving large amounts of precipitation compared to lowlands (Chap. 5), to which must be added lower evapotranspiration and the creation of snowpack reserves that delay or prolong periods of high water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Viviroli D, Weingartner R, Messerli B (2003) Assessing the hydrological significance of the World’s mountains. Mt Res Dev 23:32–40

    Article  Google Scholar 

  2. Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the World—water towers for humanity: typology, mapping and global significance. Water Resour Res 43(7):W07447. https://doi.org/10.1029/2006WR005653

    Article  Google Scholar 

  3. Immerzeel WW, Lutz AF, Hyse S, Andrade M, Bahl A, Biemans H, Bolch T, Hyde S, Brumby S, Davies BJ, Elmore AC, Emmer A, Feng M, Fernandez A, Haritashya U, Kargel JS, Koppes M, Kraaijenbrink PDA, Kulkarni AV, Mayewski PA, Nepal S, Pacheco P, Painter TH, Pellicciotti F, Rajaram H, Rupper S, Sinisalo A, Shrestha AB, Viviroli D, Wada Y, Xiao C, Yao T, Baillie JEM (2020) Importance and vulnerability of the world’s water towers. Nature 577:364–369. https://doi.org/10.1038/s41586-019-1822-y

    Article  CAS  Google Scholar 

  4. Liniger H, Weingartner R, Grosjean M (1998) Mountains of the World: water towers for the 21st century. Swiss Agency for Development and Cooperation and Institute of Geography, Université de Berne, p 32

    Google Scholar 

  5. Zampieri M, Scoccimarro E, Gualdi S, Navarra A (2015) Observed shift towards earlier spring discharge in the main Alpine rivers. Sci Total Environ 503–504:222–232. https://doi.org/10.1016/j.scitotenv.2014.06.036

    Article  CAS  Google Scholar 

  6. Beniston M, Keller F, Koffi B, Goyette S (2003) Estimates of snow accumulation and volume in the Swiss Alps under changing climate conditions. Theoret Appl Climatol 76:125–140. https://doi.org/10.1007/s00704-003-0016-5

    Article  Google Scholar 

  7. Beniston M, Keller F, Goyette S (2003) Snow pack in the Swiss Alps under changing climatic conditions: an empirical approach for climate impact studies. Theoret Appl Climatol 74:19–31. https://doi.org/10.1007/s00704-002-0709-1

    Article  Google Scholar 

  8. Beniston M (2012) Impacts of climatic change on water and associated economic activities in the Swiss Alps. J Hydrol 412:291–296. https://doi.org/10.1016/j.hydrol.2010.06.046

    Article  Google Scholar 

  9. López-Moreno JI, García-Ruiz JM (2004) Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees. Hydrol Sci J 49(5):787–802. https://doi.org/10.1623/hysj.49.5.787.55135

    Article  Google Scholar 

  10. López-Moreno JI (2005) Recent variations of snowpack depth in the Central Spanish Pyrenees. Arct Antarct Alp Res 37(2):253–260

    Article  Google Scholar 

  11. García-Ruiz JM, Beguería S, López-Moreno JI, Lorente A, Seeger M (2001a) Los recursos hídricos superficiales del Pirineo aragonés y su evolución reciente. Geoforma Ediciones, Logroño, p 192

    Google Scholar 

  12. Bruijnzeel LA, Bremmer (1989) Highland-lowland interactions in the Ganges-Brahmaputra river basin: a review of published literature. ICIMOD, Kathmandu, p 136

    Google Scholar 

  13. Siderius C, Biemans H, Wiltshire A, Rao S, Franssen WHP, Kumar P, Gosain AK, van Vliet MTH, Collins DN (2013) Snowmelt contributions to discharge of the Ganges. Sci Total Environ 468–469:93–101. https://doi.org/10.1016/j.scitotenv.2013.05.084

    Article  CAS  Google Scholar 

  14. Collins DN, Davenport JL, Stoffel M (2013) Climatic variation and runoff from partially glacierized Himalayan tributary basins of the Ganges. Sci Total Environ 468–469:48–59. https://doi.org/10.1016/j.scitotenv.2013.10.126

    Article  CAS  Google Scholar 

  15. Azam MF, Kargel JS, Shea JM, Nepal S, Haritashya UK, Srivastava S, Maussion F, Qazi N, Chevallier P, Dimri AP, Kulkarni AV, Cogley JG, Bahuguna I (2021) Glaciohydrology of the Himalaya-Karakoram. Science 373:eabf3668. https://doi.org/10.1126/science.abf3668

  16. Soruco A, Vincent C, Rabatel A, Francou B, Thibert E, Sicart JE, Condom T (2015) Contribution of glacier runoff to water resources of La Paz city, Bolivia (16° S). Ann Glaciol 56:147–154. https://doi.org/10.3189/215AoG70A001

    Article  Google Scholar 

  17. López-Moreno JI, Pomeroy JW, Morán-Tejeda E, Revuelto J, Navarro-Serrano FM, Vidaller I, Alonso-González E (2021) Changes in the frequency of global high mountain rain-on-snow events due to climate warming. Environ Res Lett 16(9):094021. https://doi.org/10.1088/1748-9326/ac0dde

    Article  Google Scholar 

  18. Serrano Notivoli R, Mora Mur D, Ollero Ojeda A, Sánchez Fabre M, Saz Sánchez MA (2014) Respuesta hidrológica al evento de precipitación de junio de 2013 en el Pirineo Central. Investigaciones Geográficas 62:5–21. https://doi.org/10.14198/INGEO2014.62.01

  19. Corripio JG, López-Moreno JI (2017) Analysis and predictability of the hydrological response of mountain catechments to heavy rain on snow events: a case study in the Spanish Pyrenees. Hydrology 4:20. https://doi.org/10.3390/hydrology4020020

    Article  Google Scholar 

  20. García-Ruiz JM, Puigdefábregas-Tomás J, Creus-Novau J (1980) Influencia de las características físicas de las cuencas hidrográficas en la frecuencia e intensidad de crecidas. Cuadernos de Investigación Geográfica 6:19–36

    Google Scholar 

  21. García-Ruiz JM, Regüés D, Alvera B, Lana-Renault N, Serrano-Muela P, Nadal-Romero E, Navas A, Latron J, Martí-Bono C, Arnáez J (2008) Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees. J Hydrol 356:245–260. https://doi.org/10.1016/j.jhydrol.2008.04.013

  22. García-Ruiz JM, Beguería S, Alatorre LC, Puigdefábregas J (2010) Land cover changes and shallow landsliding in the flysch sector of the Spanish Pyrenees. Geomorphology 124:250–259. https://doi.org/10.1016/j.geomorph.2010.03.036

    Article  Google Scholar 

  23. García-Ruiz JM, Alatorre LC, Gómez-Villar A, Beguería S (2010b) Upstream and downstream effects of check dams in braided rivers, Central Pyrenees. In: Conesa García C, Lenzi MA (eds) Check dams, morphological adjustments and erosion control in torrential streams. Nova Science Publishers, New York, pp 307–322

    Google Scholar 

  24. Alvera B, García-Ruiz JM (2000) Variability of sediment yield from a high mountain catchment, Central Spanish Pyrenees. Arct Antarct Alp Res 32(4):478–484. https://doi.org/10.1080/15230430.2000.12003392

    Article  Google Scholar 

  25. Lana-Renault N, Alvera B, García-Ruiz JM (2011) Runoff and sediment transport during the snowmelt period in a Mediterranean high-mountain catchment. Arct Antarct Alp Res 43(2):213–222. https://doi.org/10.1657/1938-4246-43.2.213

    Article  Google Scholar 

  26. Alvera B, Puigdefábregas J (1985) Pulsación diaria de la carga suspendida y disuelta en la escorrentía de fusión nival. Cuadernos de Investigación Geográfica 11:5–20

    Article  Google Scholar 

  27. Puigdefábregas J, Alvera B (1986) Particulate and dissolved matter in snowmelt runoff from small watersheds. Zeitschrift für Geomorphologie Suppl. Bd 58:69–80

    Google Scholar 

  28. Serrano-Muela MP, Lana-Renault N, Nadal-Romero E, Regüés D, Latron J, Martí-Bono C, García-Ruiz JM (2008) Forests and their hydrological effects in Mediterranean mountains: the case of the Central Spanish Pyrenees. Mt Res Dev 28(3–4):279–285. https://doi.org/10.1659/mrd.0876

    Article  Google Scholar 

  29. Juez C, Peña-Angulo D, Khorchani M, Regüés D, Nadal-Romero E (2021) 20-years of hindsight into hydrological dynamics of a mountain forest catchment in the Central Spanish Pyrenees. Sci Total Environ 766:142610. https://doi.org/10.1016/j.scitotenv.2020.142610

    Article  CAS  Google Scholar 

  30. García-Ruiz JM, Arnáez J, Beguería S, Seeger M, Martí-Bono C, Lana-Renault N, White S (2005) Flood generation in an intensively disturbed, abandoned farmland catchment. CATENA 59:79–92. https://doi.org/10.1016/j.catena.2004.05.006

    Article  Google Scholar 

  31. Lana-Renault N, Regüés D, Martí-Bono C, Beguería S, Latron J, Nadal E, Serrano P, García-Ruiz JM (2007) Temporal variability in the relationships between precipitation, discharge and suspended sediment concentration in a Mediterranean mountain catchment. Nord Hydrol 38(2):139–150. https://doi.org/10.2166/nh.2007.003

    Article  Google Scholar 

  32. Nadal-Romero E, Regüés D, Latron, J (2008) Relationships among rainfall, runoff, and suspended sediment in a small catchment with badlands. CATENA 74(2):127–136. https://doi.org/10.1016/j.catena.2008.03.014

  33. Nadal-Romero E, Peña-Angulo D, Regüés D (2018) Rainfall, run-off, and sediment transport dynamics in a humid mountain badland area: Long-term results from a small catchment. Hydrol Process 32(11):1588–1606. https://doi.org/10.1002/hyp.11495

  34. Nadal-Romero E, Cammeraat E, Serrano-Muela MP, Lana-Renault N, Regüés D (2016) Hydrological response of an afforested catchment in a Mediterranean humid mountain area: a comparative study with a natural forest. Hydrol Process 30:2717–2733. https://doi.org/10.1002/hyp.10820

    Article  Google Scholar 

  35. Juez C, Nadal-Romero E, Cammeraat E, Regüés D (2021) Spatial and temporal variability of water table dynamics in an afforested catchment of the Central Spanish Pyrenees. Hydrol Process 35:e14311. https://doi.org/10.1002/hyp.14311

    Article  Google Scholar 

  36. Lana-Renault N, López-Vicente M, Nadal-Romero E, Ojanguren R, Llorente JA, Errea P, Regüés D, Ruiz-Flaño P, Khorchani M, Arnáez J, Pasdcual N (2018) Catchment based hydrology under post farmland abandonment scenarios. Geograph Res Lett 44(2):503–534. https://doi.org/10.18172/cig.3475

  37. Llorente-Adán JA, Ruiz-Flaño P, Lana-Renault N, Arnáez J (2018) Respuesta hidrogeomorfológica de una cuenca de bancales abandonados (Camero Viejo, La Rioja, España). In: García C, Gómez-Pujol L, Morán-Tejeda E, Batalla RJ (eds) Geomorfología del Antropoceno. Efectos del cambio global sobre los procesos geomorfológicos. Palma de Mallorca, Universitat de las Illas Balears, pp 289–292

    Google Scholar 

  38. Arnáez J, Lana-Renault N, Lasanta T, Ruiz-Flaño P, Castroviejo J (2015) Effects of farming terraces on hydrological and geomorphological processes. A review. CATENA 128:122–134. https://doi.org/10.1016/j.catena.2015.01.021

    Article  Google Scholar 

  39. Latron J, Gallart F (2008) Runoff generation processes in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). J Hydrol 358:206–220. https://doi.org/10.1016/j.jhydrol.2008.06.014

    Article  Google Scholar 

  40. Nunes JP, Bernard-Jannin L, Rodríguez-Blanco ML, Santos JM, Alves-Coelho CO, Keizer JJ (2016) Hydrological and erosional processes in terraced fields: observations from a humid Mediterranean region in northern Portugal. Land Degrad Dev 29:596–606. https://doi.org/10.1002/ldr.2550

    Article  Google Scholar 

  41. Moreno-de-las-Heras M, Lindenberger F, Latron J, Lana-Renault N, Llorens P, Arnáez J, Romero-Díaz A, Gallart F (2019) Hydro-geomorphological consequences of the abandonment of agricultural terraces in the Mediterranean region: key controlling factors and landscape stability patterns. Geomorphology 333:73–91. https://doi.org/10.1016/j.geomorph.2019.02.014

    Article  Google Scholar 

  42. Narayana DVV (1987) Downstream impacts of soil conservation in the Himalayan region. Mt Res Dev 7(3):287–298. https://doi.org/10.2307/3673207

    Article  Google Scholar 

  43. Cosandey C, Andréassian V, Martin C, Didon-Lescot JF, Lavabre J, Folton N, Mathys N, Richard D (2005) The hydrological impact of the Mediterranean forest: a review of French research. J Hydrol 301:235–249. https://doi.org/10.1016/j.hydrol.2004.06.040

    Article  Google Scholar 

  44. Latron J, Soler M, Llorens P, Gallart F (2008) Spatial and temporal variability of the hydrological response in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). Hydrol Process 22:775–787. https://doi.org/10.1002/hyp.6648

    Article  Google Scholar 

  45. Llorens P, Domingo F (2007) Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J Hydrol 335:37–54. https://doi.org/10.1016/j.jhydrol.2006.10.032

    Article  Google Scholar 

  46. Penna D, Mantese N, Hopp L, Dalla Fontana G, Borga M (2015) Sapatio-temporal variability of piezometric response on two steep Alpine hillslopes. Hydrol Process 29(2):198–211. https://doi.org/10.1002/hy.10140

    Article  Google Scholar 

  47. Lana-Renault N, Regüés D, Serrano P, Latron J (2014) Spatial and temporal variability of groundwater dynamics in a sub-Mediterranean mountain catchment. Hydrol Process 28(8):3288–3299. https://doi.org/10.1002/hyp.9892

    Article  Google Scholar 

  48. Castillo V, Gómez-Plaza A, Martínez-Mena M, Albaladejo J (2000) Respuesta hidrológica en los medios semiáridos: las cuencas experimentales de la Sierra del Picarcho, Murcia (España). Cuadernos de Investigación Geográfica 26:81–94

    Article  Google Scholar 

  49. Gallart F, Llorens P, Latron J, Regüés D (2002) Hydrological processes and their seasonal controls in a small Mediterranean mountain catchment in the Pyrenees. Hydrol Earth Syst Sci 6(3):527–537. https://doi.org/10.5195/hess-6-527-2002

    Article  Google Scholar 

  50. Harden CP (2006) Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology 79:249–263. https://doi.org/10.1016/j.geomorph.2006.06.021

    Article  Google Scholar 

  51. López-Moreno JI, Beguería S, García-Ruiz JM (2006) Trends in high flows in the central Spanish Pyrenees: response to climatic factors or to land-use change? Hydrol Sci J 51(6):1039–1050. https://doi.org/10.1623/hysj.51.6.1039

    Article  Google Scholar 

  52. García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta-Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105:121–139. https://doi.org/10.1016/j.earscirev.2011.01.006

    Article  Google Scholar 

  53. García-Ruiz JM, Lana-Renault N (2011) Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region—a review. Agr Ecosyst Environ 140:317–338. https://doi.org/10.1016/j.agee.2011.01.003

    Article  Google Scholar 

  54. Morán-Tejeda E, López-Moreno JI, Vicente-Serrano SM, Lorenzo-Lacruz J, Ceballos-Barbancho A (2012) The contrasted evolution of high and low flows and precipitation indices in the Duero basin (Spain). Hydrol Sci J 57(4):591–611. https://doi.org/10.1080/02626667.2012.673722

    Article  Google Scholar 

  55. Bathurst JC, Birkinshaw SJ, Cisneros Espinosa F, Iroumé A (2017) Forest impact on flood peak discharge and sediment yield in streamflow. In: River system analysis and management, pp 15–29. https://doi.org/10.1007/978-981-10-1472-7_2

  56. Pisabarro A, Pellitero R, Serrano E, López-Moreno JI (2019) Impacts of land abandonment and climate variability on runoff generation and sediment transport in the Pisuerga headwaters (Cantabrian Mountains, Spain). Geogr Ann Ser B 101(3):211–224. https://doi.org/10.1080/04353676.2019.1591042

    Article  Google Scholar 

  57. Yilmaz M, Tosunoglu F (2019) Trend assessment of annual instantaneous maximum flows in Turkey. Hydrol Sci J 64(7):820–834. https://doi.org/10.1080/02626667.2019.1608996

    Article  Google Scholar 

  58. Wang Y, Liang E, Ellison AM, Lu X, Camarero JJ (2015) Facilitation stabilizes moisture-controlled alpine juniper shrublands in the central Tibetan Plateau. Glob Planet Change 132:20–30. https://doi.org/10.1016/j.gloplacha.2015.06.007

    Article  Google Scholar 

  59. Wang Z, Lee JHW, Melching CS (2015) River dynamics and integrated river management. Springer, Belin, p 847

    Book  Google Scholar 

  60. López-Moreno JI, Beguería S, García-Ruiz JM (2004) The Management of a Large Mediterranean Reservoir: Storage Regimens of the Yesa Reservoir, Upper Aragon River Basin, Central Spanish Pyrenees. Environ Manag 34:508–515. https://doi.org/10.1007/s00267-003-0249-1

  61. López-Moreno JI, García-Ruiz JM (2003) Influencia de los embalses sobre el régimen fluvial en los Pirineos centrales. Cuadernos de Investigación Geográfica 29:7–21

    Article  Google Scholar 

  62. López-Moreno JI, Beguería S, García-Ruiz JM (2002) Floods downstream the Yesa Reservoir, Spanish Pyrenees. Cuadernos de Investigación Geográfica 28:101–108

    Article  Google Scholar 

  63. Vicente-Serrano SM, Zabalza-Martínez J, Borràs G, López-Moreno JI, Pla E, Pascual D, Savé R, Biel C, Funes I, Azorín-Molina C, Sánchez-Lorenzo A, Martín-Hernández N, Peña-Gallardo M, Alonso-González E, Tomas-Burguera M, El Kenawy A (2017) Extreme hydrological events and the influence of reservoirs in a highly regulated river basin of northeastern Spain. J Hydrol Reg Stud 12:13–32. https://doi.org/10.1016/j.ejrh.2017.01.004

    Article  Google Scholar 

  64. Zsuffa I (1998) Impact of Austrian hydropower plants on the flood control safety of the Hungarian Danube reach. Hydrol Sci J 44(3):363–371. https://doi.org/10.1080/02626669909492232

    Article  Google Scholar 

  65. García-Ruiz JM, Gómez-Villar A, Ortigosa-Izquierdo L (1987) Aspectos dinámicos de un cauce fluvial en el contexto de su cuenca: el ejemplo del río Oja. Instituto Pirenaico de Ecología e Instituto de Estudios Riojanos, Zaragoza, p 112

    Google Scholar 

  66. Gomez B, Rosser BJ, Peacock DH, Hicks DM, Palmer JA (2001) Downstream fining in a rapidly aggrading gravel bed river. Water Resour Res 37(6):1813–1823. https://doi.org/10.1029/2001WR900007

    Article  Google Scholar 

  67. Gasparini NM, Tucker GE, Bras RL (2004) Network-scale dynamics of grain-size sorting: implications for downstream fining, stream-profile concavity, and drainage basin morphology. Earth Surf Proc Land 29:401–421. https://doi.org/10.1002/esp.1031

    Article  Google Scholar 

  68. Knighton AD (1980) Longitudinal changes in size and sorting of stream-bed material in four English rivers. Geol Soc Am Bull 91:55–62

    Article  Google Scholar 

  69. Brummer CJ, Montgomery DR (2003) Downstream coarsening in headwater channels. Water Resour Res 39(10):1294. https://doi.org/10.1029/2003WR001981

    Article  Google Scholar 

  70. Benda L, Andras K, Miller D, Bigelow P (2004) Confluence effects in rivers: interactions of basin scale, network geometry, and disturbance regimes. Water Resour Res 40:W05402. https://doi.org/10.1029/2003WR002583

    Article  Google Scholar 

  71. Lenzi MA, Marchi L (2000) Suspended sediment load during floods in a small stream of the Dolomites (northeastern Italy). CATENA 32:267–282. https://doi.org/10.1016/S0341-8162(00)00079-5

    Article  Google Scholar 

  72. Lenzi, MA, D´Agostino V, Billi P (1999) Bedload transport in the instrumented catchment of the Rio Cordon: Part I: Analysis of bedload records, conditions and threshold of bedload entrainment. CATENA 36(3):171–190. https://doi.org/10.1016/S0341-8162(99)00016-8

  73. Hayward JA (1980) Hydrology & Stream Sediment from Torlesse Strean Catchment. Tussock Grasslands & Mountain Lands Institute, Lincoln College, New Zealand, p 236

    Google Scholar 

  74. Schumm SA (1977) The fluvial system. Wiley, New York, p 338

    Google Scholar 

  75. Benda L, Hassan MA, Church M, May CL (2005) Geomorphology of steepland headwaters: the transition from hillslopes to channels. J Am Water Resour Assoc 41(4):835–851. https://doi.org/10.1111/j.1752-1688.2005.tb03773.x

    Article  Google Scholar 

  76. Gomez B (1987) Bedload. In: Gurnell AM, Clark MJ (eds) Glacio-fluvial sediment transfer. Wiley, Chichester, pp 355–376

    Google Scholar 

  77. Lana-Renault N, Regüés D (2007) Bedload transport under different flow conditions in a human-disturbed catchment in the Central Spanish Pyrenees. Catena 71(1):155–163. https://doi.org/10.1016/j.catena.2006.04.029

    Article  Google Scholar 

  78. Leopold LB (1992) Sediment size that determines channel morphology. In: Billi P, Hey RD, Thorne CR, Tacconi P (eds) Dynamics of gravel-bed rivers. Wiley, Chichester, pp 298–307

    Google Scholar 

  79. Gómez-Villar A, Sanjuán Y, García-Ruiz JM, Nadal-Romero E, Álvarez-Martínez J, Arnáez J, Serrano-Muela MP (2014) Sediment organization and adjustment in a torrential reach of the Upper Ijuez River, Central Spanish Pyrenees. Cuadernos de Investigación Geográfica 40(1):191–214. https://doi.org/10.18172/cig.2566

  80. Sanjuán Y, Gómez-Villar A, Nadal-Romero E, Álvarez-Martínez J, Arnáez J, Serrano-Muela MP, Rubiales JM, González-Sampériz P, García-Ruiz JM (2016) Linking land cover changes in the sub-alpine and montane belts to changes in a torrential river. Land Degrad Dev 27:179–189. https://doi.org/10.1002/ldr.2294

    Article  Google Scholar 

  81. Surian N, Rinaldi M (2003) Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 50:307–326. https://doi.org/10.1016/S0169-555X(02)00219-2

    Article  Google Scholar 

  82. Surian N, Ziliani L, Comiti F, Lenzi MA, Mao L (2009) Channel adjustments and alteration of sediment fluxes in gravel-bed rovers on north-eastern Italy: potentials and limitations for channel recovery. River Res Appl 25:551–567. https://doi.org/10.1002/rra.1231

    Article  Google Scholar 

  83. Leopold LB (1994) A view of the river. Harvard University Press, Cambridge, p 298

    Google Scholar 

  84. Church M (2006) Bed material transport and the morphology of alluvial river channels. Ann Rev Earth Planet Sci 34:325–354

    Article  CAS  Google Scholar 

  85. Bridge JS, Lunt AA (2006) Depositional models of braided rivers. In: Sambrook Smith GH, Best JL, Bristow CS, Petts GE (eds) Braided rivers. Process, deposits, ecology and management. Blackwell Publishing, pp 11–50

    Google Scholar 

  86. Liébault F, Clément P, Piégay H, Landon N (1999) Assessment of bedload delivery from tributaries: the Drôme River case, France. Arct Antarct Alp Res 31(1):108–117. https://doi.org/10.1080/15230430.1999.12003286

    Article  Google Scholar 

  87. Gómez-Villar A, Álvarez-Martínez J, García-Ruiz JM (2006) Factors influencing the presence or absence of tributary-junction fans in the Iberian Range, Spain. Geomorphology 81:252–264. https://doi.org/10.1016/j.geomorph.2006.04.011

    Article  Google Scholar 

  88. Boix-Fayos C, Barberá GG, López-Bermúdez F, Castillo VM (2007) Effects of check dams, reforestation and land-use changes on river channel morphology: case study of the Rogativa catchment (Murcia, Spain). Geomorphology 91:103–123. https://doi.org/10.1016/j.geomorph.2007.02.003

    Article  Google Scholar 

  89. White S, García-Ruiz JM, Martí C, Valero B, Errea MP, Gómez-Villar A (1997) The 1996 Biescas campsite disaster in the Central Spanish Pyrenees, and its temporal and spatial context. Hydrol Process 11(14):1797–1812

    Google Scholar 

  90. Ortigosa LM, García-Ruiz JM, Gil Pelegrín E (1990) Land reclamation by reforestation in the Central Pyrenees. Mt Res Dev 10(3):281–288

    Article  Google Scholar 

  91. Ortigosa LM (1991) Las repoblaciones forestales en La Rioja: Resultados y efectos geomorfológicos. Geoforma Ediciones, Logroño, p 149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. García-Ruiz .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Ruiz, J.M., Arnáez, J., Lasanta, T., Nadal-Romero, E., López-Moreno, J.I. (2024). Hydrology and Fluvial Morphology in Mountains: Those Special Rivers. In: Mountain Environments: Changes and Impacts. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-51955-0_9

Download citation

Publish with us

Policies and ethics