Skip to main content

The Main Features of Mountain Vegetation and Its Altitudinal Organization. The Timberline

  • Chapter
  • First Online:
Mountain Environments: Changes and Impacts

Abstract

This chapter lays down the foundations for some of the important questions that will be raised about hydrological (Chap. 9) and geomorphological (Chap. 10) functioning of the mountains, as well as various aspects of landscape transformation in mountain areas and its use by human societies (Chaps. 11 and 12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billings WD (1974) Arctic and alpine vegetation: plant adaptations to cold summer climates. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 403–443

    Google Scholar 

  2. Hadley KS, Price LW, Grabherr G (2013) Mountain vegetation. In: Price MF, Byers AC, Friend DA, Kohler T, Price LW (eds) Mountain geography. Physical and human dimensions. University of California Press, Berkeley, pp 183–220

    Google Scholar 

  3. Ives JD (1974) Biological refugia and the nunatak hypothesis. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 605–636

    Google Scholar 

  4. García MB (2003) Demographic viability of a relict population of the critically endangered plant Borderea chouardii. Conservation Biology 17(6):1672–1680

    Google Scholar 

  5. García MB, Domingo D, Pizarro M, Font X, Gómez D, Ehrlén J (2020) Rocky habitats as microclimatic refuges for biodiversity. A close-up thermal approach. Environ Exp Bot 170:103886. https://doi.org/10.1016/j.envexpbot.2019.103886

  6. Montserrat Recoder P (1988) Flora. Enciclopedia temática de Aragón, Tomo 6. Ediciones Moncayo, Zaragoza, p 320

    Google Scholar 

  7. Médail F, Verlaque R (1997) Ecological characteristics and rarity of endemic plants from Southeast France and Corsica: implications for biodiversity conservation. Biol Cons 80:269–281

    Article  Google Scholar 

  8. Birks HJB, Willis KJ (2008) Alpines, trees, and refugia in Europe. Plant Ecolog Divers 1(2):147–160. https://doi.org/10.1080/17550870802349146

    Article  Google Scholar 

  9. Davis KT, Dobrowski SZ, Holden ZA, Higuera PE, Abatzoglou JT (2019) Microclimatic buffering in forests of the future: the role of local water balance. Ecography 42(1):1–11. https://doi.org/10.1111/ecog.03836

    Article  Google Scholar 

  10. García MB, Miranda H, Pizarro M, Font X, Roquet C, González-Sampériz P (2022) Habitats hold an evolutionary signal of past climatic refugia. Biodivers Conserv 31:1665–1688. https://doi.org/10.1007/s10531-022-02419-4

    Article  Google Scholar 

  11. Hoffrén R, Miranda H, Pizarro M, Tejero P, García MB (2022) Identifying the factors behind climate diversification and refugial capacity in mountain landscapes: the key role of forests. Rem Sens 14:1708. https://doi.org/10.3390/rs14071708

    Article  Google Scholar 

  12. Hoffrén R, García MB (2023) Thermal unmanned aerial vehicles for the identification of microclimatic refugia in topographically complex areas. Rem Sens Environ 286:113423. https://doi.org/10.1016/j.rse.2022.113427

    Article  Google Scholar 

  13. Frey SJK, Hadlay AS, Johnson SL, Schulze M, Jones JA, Betts MG (2016) Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci Adv 2:e1501392. https://doi.org/10.1126/sciadv.1501392

    Article  Google Scholar 

  14. Sanmiguel-Vallelado A, Camarero JJ, Morán-Tejeda E, Gazol A, Colangelo M, Alonso-González E, López-Moreno JM (2021) Snow dynamics influence tree growth by controlling soil temperature in mountain pine forests. Agric For Meteorol 296:108205. https://doi.org/10.1016/j.agrformet.2020.108205

    Article  Google Scholar 

  15. Price MF (2015) Mountains: a very short introduction. Oxford University Press, Oxford, p 134

    Book  Google Scholar 

  16. García-Ruiz JM, Regüés D, Alvera B, Lana-Renault N, Serrano-Muela P, Nadal-Romero E, Navas A, Latron J, Martí-Bono C, Arnáez J (2008) Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees. J Hydrol 356:245–260. https://doi.org/10.1016/j.jhydrol.2008.04.013

  17. Serrano-Muela MP, Lana-Renault N, Nadal-Romero E, Regüés D, Latron J, Martí-Bono C, García-Ruiz JM (2008) Forests and their hydrological effects in Mediterranean mountains: the case of the Central Spanish Pyrenees. Mt Res Dev 28(3–4):279–285. https://doi.org/10.1659/mrd.0876

    Article  Google Scholar 

  18. Lana-Renault N, Nadal-Romero E, Serrano-Muela MP, Alvera B, Sánchez-Navarrete P, Sanjuan Y, García-Ruiz JM (2014) Comparative analysis of the response of various land covers to an exceptional rainfall event in the central Spanish Pyrenees, October 2012. Earth Surf Proc Land 39:581–592. https://doi.org/10.1002/esp.3465

    Article  Google Scholar 

  19. Blijenberg H (1998) Rolling stones? Triggering and frequency of hillslope debris flows in the Bachelard Valley, Southern French Alps. Utrecht University

    Google Scholar 

  20. García-Ruiz JM, Beguería S, Alatorre LC, Puigdefábregas J (2010) Land cover changes and shallow landsliding in the flysch sector of the Spanish Pyrenees. Geomorphology 124:250–259. https://doi.org/10.1016/j.geomorph.2010.03.036

    Article  Google Scholar 

  21. Begueria S (2005) Changes in land cover and shallow landslide activity: a case study in the Spanish Pyrenees. Geomophology 74:196–206. https://doi.org/10.1006/j.geomorph.2005.07.018

  22. Hamilton LS, Gilmour DA, Cassells DS (1997) Montane forests and forestry. In: Messerli B, Ives JD (eds) Mountains of the world. A global priority. The Parthenon Publishing Group, London, pp 281–311

    Google Scholar 

  23. Bruijnzeel LA, Hamilton LS (2001) Decisive weather for cloud forests. International Hydrological Program, UNESCO, Paris, p 40

    Google Scholar 

  24. Rada F, Azócar A, García-Núñez C (2019) Plant functional diversity in tropical Andean paramos. Plant Ecolog Divers 12(6):539–553. https://doi.org/10.1080/17550874.2019.1674396

    Article  Google Scholar 

  25. Retzer JL (1974) Alpine soils. In: Ives jd, Barry RG (eds.) Arctic and alpine environments. London, Methuen, p 771–802

    Google Scholar 

  26. Price LW, Harden CP (2013) Mountain soils. In: Price MF, Byers AC, Friend DA, Kohler T, Price LW (eds) Mountain geography. Physical and human dimensions. University of California Press, Berkeley, pp 167–182

    Google Scholar 

  27. Price LW (1981) Mountains and man. University of California Press, Berkeley, p 508

    Google Scholar 

  28. Vidal-Bardán M, Sánchez-Carpintero I (1990) Análisis e interpretación de algunas cuestiones que plantea el complejo de morrenas y terrazas del río Aragón (Huesca). Cuaternario y Geomorfología 4:107–118

    Google Scholar 

  29. García-Ruiz JM, Martí-Bono C, Peña-Monné JL, Sancho C, Rhodes EJ, Valero-Garcés B, González-Sampériz P, Moreno A (2013) Glacial and fluvial deposits in the Aragón Valley, Central-Western Pyrenees: chronology of the Pyrenean Late Pleistocene glaciers. Geogr Ann Ser B 95:15–32. https://doi.org/10.1111/j.1468-0459.2012.00478.x

    Article  Google Scholar 

  30. Melón A (1960) Alejandro de Humboldt. Vida y obra. Ediciones de Historia, Geografía y Arte, Madrid. Hemos manejado la reimpresión de 2021, con introducción y edición a cargo de Josefina Gómez Mendoza. Urgoiti Editores, Pamplona, p 287

    Google Scholar 

  31. Gómez Mendoza J (2005) Los Cuadros de la Naturaleza de Humboldt en el inicio de la literatura del paisaje. En: Homenaje a Alejandro de Humboldt. Literatura de viajes desde y hacia Latinoamérica. Siglos XV-XXI. Humboldt State University, Universidad Autónoma Benito Juárez de Oaxaca, pp 104–114

    Google Scholar 

  32. Gómez Mendoza J (2021) Amando Melón y su Humboldt. In: Melón A (1961) Alejandro de Humboldt. Vida y obra. Urgoiti Editores, Pamplona, pp V–XCIII

    Google Scholar 

  33. Gómez Mendoza J, Sanz Herráiz C (2010) De la biogeografía al paisaje de Humboldt: pisos de vegetación y paisajes andinos equinocciales. Población y Sociedad 17:29–57

    Google Scholar 

  34. González Trueba JJ (2012) Carl Troll y la Geografía del paisaje: vida, obra y traducción de un texto fundamental. Boletín de la Asociación de Geógrafos Españoles 59:173–200

    Google Scholar 

  35. Troll C (1972) Geoecology of the world-wide differentiation of the high mountain ecosystems. In: Troll C (ed) Geoecology of the high mountain regions of Eurasia. Franz Steiner, Wiesbaden, pp 1–13

    Google Scholar 

  36. Troll C (1973) High mountain belts between the polar caps and the equator: their definition and lower limit. Arct Alp Res 5(3):19–28

    Google Scholar 

  37. Ozenda P (2002) Perspectives pour une géobiologie des montagnes. Presses Polytechniques et Universitaires Romandes, Lausanne, p 195

    Google Scholar 

  38. García-Ruiz JM, López-Moreno JI, Lasanta T, Vicente-Serrano S, González-Sampériz P, Valero-Garcés BL, Sanjuán Y, Beguería S, Nadal-Romero E, Lana-Renault N, Gómez-Villar A (2015) Efectos geoecológicos del cambio global en el Pirineo Central español: una revisión a distintas escalas espaciales y temporales. Pirineos 170:e012. https://doi.org/10.3989/pirineos.2015.170005

    Article  Google Scholar 

  39. Ives JD, Messerli B (1989) The Himalayan dilemma. Reconciling development and conservation. Routledge, London, p 295

    Google Scholar 

  40. Leunda M, González-Sampériz P, Gil-Romera G, Bartolomé M, Belmonte-Ribas A, Gómez-García D, Kaltenrieder P, Rubiales JM, Schwörer C, Tinner W, Morales-Molino C, Sancho C (2019) Ice cave reveals environmental forcing of long-term Pyrenean tree line dynamics. J Ecol 107(2):814–828. https://doi.org/10.1111/1365-2745.13077

    Article  Google Scholar 

  41. Blarquez O, Carcaillet C, Bremond L, Mourier B, Radakovitch O (2009) Trees in the subalpine belt since 11700 cal. BP: origin, expansion and alteration of the modern forest. Holocene 20(1):139–146. https://doi.org/10.1177/0959683609348857

  42. Wardle P (1974) Alpine timberlines. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 371–402

    Google Scholar 

  43. Wardle P (1981) Is the alpine timberline set by physiological tolerance, reproductive capacity or biological interactions? Proc Ecol Soc Aust 11:53–66

    Google Scholar 

  44. Ives JD, Hansen-Bristow KJ (1983) Stability and instability of natural and modified upper timberline landscapes in the Colorado Rocky Mountains, USA. Mt Res Dev 3(2):149–155

    Article  Google Scholar 

  45. Körner C, Spehn EM (2011) A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp Bot 121:73–78. https://doi.org/10.1007/s00035-011-0094-4

  46. Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  47. Camarero JJ, Gutiérrez E (1999) Estructura de un ecotono bosque subalpino-pastos alpinos (Las Cutas, Ordesa, Pirineos centrales). Pirineos 153–154:21–59

    Article  Google Scholar 

  48. Arno SF, Hammerly RP (1984) Timberline: mountain and arctic frontier forests. Mountaineers Books, Seattle, p 304

    Google Scholar 

  49. Puigdefábregas J (1978) The birch in the Pyrenees. Estudios Geográficos 153:563–566

    Google Scholar 

  50. Ali M, Sigdel SR, Zheng X, Asad F, Huang R, Zhu H, Muhammad S, Hussain I, Camarero JJ, Liang E (2022) Contrasting treeline dynamics of pine and birch in response to climate warming in the Karakoram. Trees. https://doi.org/10.1007/s00468-022-02337-6

    Article  Google Scholar 

  51. Wang Y, Liang E, Ellison AM, Lu X, Camarero JJ (2015) Facilitation stabilizes moisture-controlled alpine juniper shrublands in the central Tibetan Plateau. Glob Planet Change 132:20–30. https://doi.org/10.1016/j.gloplacha.2015.06.007

  52. Pecher C, Tasser E, Tappeineer U (2011) Definition of the potential treeline in the European Alps and its benefit for sustainability monitoring. Ecol Ind 11:438–447. https://doi.org/10.1016/j.ecolind.2010.06.015

    Article  Google Scholar 

  53. Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change and landscape and local scales. Glob Ecol Biogeogr 14:385–410

    Article  Google Scholar 

  54. García-Ruiz JM, Palacios D, Andrés N, López-Moreno JI (2020) Neoglaciation in the Spanish Pyrenees: a multiproxy challenge. Mediterr Geosci Rev 2:21–36. https://doi.org/10.1007/s42990-020-00022-9

    Article  Google Scholar 

  55. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582

    Article  Google Scholar 

  56. Tasser E, Walde J, Tappeiner U, Teutsch A, Noggler W (2007) Land-use changes and natural reforestation in the Eastern Central Alps. Agr Ecosyst Environ 118(1–4):115–129. https://doi.org/10.1016/j.agee.2006.05.004

    Article  Google Scholar 

  57. Kullman L, Öberg L (2009) Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective. J Ecol 97:415–429

    Article  Google Scholar 

  58. Camarero JJ, García-Ruiz JM, Sangüesa-Barreda G, Galván JD, Alla AQ, Sanjuán Y, Beguería S, Gutiérrez E (2015) Recent and intense dynamics in a formerly static Pyrenean treeline. Arct Antarct Alp Res 47(4):773–783. https://doi.org/10.1657/AAAR0015-001

    Article  Google Scholar 

  59. Jakubos B, Romme WH (1993) Invasion of subalpine meadowsby lodgepole pine in Yellowstone National Park, Wyoming, U.S.A. Arct Alp Res 25:382–390

    Article  Google Scholar 

  60. Lu X, Liang E, Wang Y, Babst F, Camarero JJ (2020). Mountain treelines climb slowly despite rapid climate warming. Glob Ecol Biogeogr 30(1):305–315. https://doi.org/10.1111/geb.13214

  61. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637. https://doi.org/10.1038/ngeo2234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. García-Ruiz .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Ruiz, J.M., Arnáez, J., Lasanta, T., Nadal-Romero, E., López-Moreno, J.I. (2024). The Main Features of Mountain Vegetation and Its Altitudinal Organization. The Timberline. In: Mountain Environments: Changes and Impacts. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-51955-0_8

Download citation

Publish with us

Policies and ethics