Skip to main content

Ice and Glaciers in the Mountains

  • Chapter
  • First Online:
Mountain Environments: Changes and Impacts

Abstract

As is well known, there are two major domains of ice on the Earth’s surface: (i) polar and circumpolar areas, including near the coastlines, and (ii) mountain areas, where the presence of ice depends on both altitude and latitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morlighem M, Rignot E, Binder T, Blankenship D, Drews R, Eagles G, Eisen O, Ferraccioli F, Forsberg R, Fretwell P, Goel V, Greenbaum JS, Gundmusson H, Guo J, Helm V, Hofstede C, Howat I, Humbert A, Jokat W, Karlsson NB, Lee WS, Matsuoka K, Millan R, Mouginot J, Paden J, Pattyn F, Roberts J, Rosier S, Ruppel A, Seroussi H, Smith EC, Steinhage D, Sun B, van den Broeke MR, van Ommen TD, van Messen M, Young DA (2020) Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice-sheet. Nat Geosci 13:132–137. https://doi.org/10.1038/s41561-019-0510-8

    Article  CAS  Google Scholar 

  2. Pfeffer WT, Arendt AA, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen JO, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, Mölg N, Paul F, Radic V, Rastner P, Raup BH, Rich J, Sharp MJ, The Randolph Consortium (2014) The Randolph Glacier inventory: a globally complete inventory of glaciers. J Geol 60(221):537–552. https://doi.org/10.3189/2014JoG13J176

  3. Farinotti D, Huss M, Fürst JJ, Landmann J, Machguth H, Maussion F, Pandit A (2019) A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat Geosci 12(3):168–173. https://doi.org/10.1038/s41561-019-0300-3

    Article  CAS  Google Scholar 

  4. Zumbühl HJ, Nussbaumer SU (2018) Little Ice glacier history of the central and western Alps from pictorial documents. Cuadernos de Investigación Geográfica 44(1):115–136. https://doi.org/10.18172/cig.3363

  5. Muir J (2018) Cuaderno de montaña. Volcano Libros, Las Rozas, p 195

    Google Scholar 

  6. Ives JD (2012) Environmental change and challenge in the Himalaya. A historical perspective. Pirineos 167:29–68. https://doi.org/10.3989/Pirineos.2012.167003

    Article  Google Scholar 

  7. Hughes PD (2022) Concept and global context of the glacial landforms from the Last Glacial Maximum. In: Palacios D, Hughes PD, García-Ruiz JM, Andrés N (eds) European glacial landscapes. Maximum extent of glaciations. Elsevier, Amsterdam, pp 355–358. https://doi.org/10.1016/B978-0-12-823498.3.00039-X

  8. Haeberli W, Zemp M (2009) Mountain glaciers as key indicators of climate change. In: Mountains and climate change. From understanding to action. University of Bern, pp 21–25

    Google Scholar 

  9. Dyurgerov M, Meier MF (2005) Glaciers and the changing Earth system: a 2004 snapshot. Occasional Paper 58, Institute of Arctic and Alpine Research, University of Colorado, Boulder, p 118

    Google Scholar 

  10. Windnagel A, Hock R, Maussion F, Paul F, Rastner P, Raup B, Zemp M (2022) Which glaciers are the largest in the world? J Glaciol 1–10. https://doi.org/10.1017/jog.2022.61

  11. Biemans H, Siderius C, Lutz AF, Nepal S, Ahmad B, Hassan TV, Bloh W, Wijngaard RR, Wester P, Shrestha AB (2019) Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat Sustain 2:594–601. https://doi.org/10.1038/s41893-019-0305-3

    Article  Google Scholar 

  12. Cook D, Malinauskaite L, Davidsdóttir B, Ögmunddardóttir H (2021) Co-production processesunderpinning the ecosystem services of glaciers and adaptive management in the era of climate change. Ecosyst Serv 50:101342. https://doi.org/10.1016/j.ecoser.2021.101342

    Article  Google Scholar 

  13. Francou B (1993) Hautes montagnes. Passion d’explorations. Masson, Paris, p 202

    Google Scholar 

  14. Kaser G, Juen I, Georges C, Gómez J, Tamayo W (2003) The impact of glaciers on the runoff and the reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Perú. J Hydrol 282:130–144. https://doi.org/10.1016/S0022-1694(03)00259-2

    Article  Google Scholar 

  15. López-Moreno JI, Fontaneda S, Bazo J, Revuelto J, Azorín-Molina C, Valero-Garcés B, Morán-Tejeda E, Vicente-Serrano SM, Zubieta R, Alejo-Cochanchín J (2014) Recent glacier retreat and climate trends in Cordillera Huaytapallana, Peru. Glob Planet Change 112:1–12. https://doi.org/10.1016/j.gloplacha.2013.10.010

    Article  Google Scholar 

  16. Liniger H, Weingartner R, Grosjean M (1998) Mountains of the World: water towers for the 21st century. Swiss Agency for Development and Cooperation and Institute of Geography, Université de Berne, p 32

    Google Scholar 

  17. Soruco A, Vincent C, Rabatel A, Francou B, Thibert E, Sicart JE, Condom T (2015) Contribution of glacier runoff to water resources of La Paz city, Bolivia (16° S). Ann Glaciol 56:147–154. https://doi.org/10.3189/215AoG70A001

    Article  Google Scholar 

  18. Hagg W, Braun L (2005) The influence of glacier retreat on water yield from high mountain areas: comparison of Alps and Central Asia. In: de Jong C, Collins D, Ranzi R (eds) Climate and hydrology in mountain areas. Wiley, Chichester, pp 263–275

    Google Scholar 

  19. Huss M, Hock R (2018) Global-scale hydrological response to future glacier mass loss. Nat Clim Chang 8:135–140. https://doi.org/10.1038/s41558-017-0049-x

    Article  Google Scholar 

  20. Beniston M (2019) The impact of climate change on snow cover and Alpine glaciers: consequences on water resources. Encyclopédie de l’environnement. Université de Grenoble Alpes, p 9

    Google Scholar 

  21. López-Moreno JI, García-Ruiz JM, Vicente-Serrano SM, Alonso-González E, Revuelto-Benedí J, Rico I, Izagirre E, Beguería-Portugués S (2020) Critical discussion of “A farewell to glaciers: ecosystem services loss in the Spanish Pyrenees.” J Environ Manage 275:111247. https://doi.org/10.1016/j.jenvman.2020.110789

    Article  Google Scholar 

  22. Hughes PD (2018) Little Ice Age Glaciers and climate in the Mediterranean mountains: a new analysis. Cuadernos de Investigación Geográfica 44(1):15–45. https://doi.org/10.18172/cig.3362

  23. McKay NP, Kaufman DS, Routson CC, Erb MP, Zander PD (2018) The onset and rate of Holocene Neoglacial cooling in the Arctic. Geophys Res Lett 45:12487–12496. https://doi.org/10.1029/218GL079773

    Article  Google Scholar 

  24. Clague JJ, Menounos B, Osborn G, Luckman BH, Koch J (2009) Nomenclature and resolution in Holocene glacial chronologies. Quatern Sci Rev 28:2231–2238. https://doi.org/10.1016/j.quascirev.2008.11.016

    Article  Google Scholar 

  25. Solomina ON, Bradley RS, Hodgson DA, Ivy-Ochs S, Jomelli V, Mackintosh AN, Nesje A, Owen LA, Wanner H, Wiles GC, Young NE (2015) Holocene glacier fluctuations. Quatern Sci Rev 111:9–34. https://doi.org/10.1016/j.quascirev.2014.11.018

    Article  Google Scholar 

  26. Wanner H, Solomina O, Grosjean M, Ritz SP, Jetel M (2011) Structure and origin of Holocene cold events. Quatern Sci Rev 30:3109–3123. https://doi.org/10.1016/j.quascirev.2011.07.010

    Article  Google Scholar 

  27. Renssen H, Seppä A, Crosta X et al (2012) Global characterization of the Holocene Thermal Maximum. Quat Sci Rev 48:7–19. https://doi.org/10.1016/j.quascirev.2012.05.022

  28. Matero ISO, Gregoire LJ, Ivanovic RF, Tindall JC, Haywood AM (2017) The 8.2 ka cooling caused by Laurentide ice saddle collapse. Earth Planet Sci Lett 473:205–214. https://doi.org/10.1016/j.epsl.2017.06.011

    Article  Google Scholar 

  29. Matthews JA, Berrisford MS, Dresser PQ, Nesje A, Dahl SO, Bjune AE, Bakke J, Birks HJB, Lie Ø, Dumayne-Peaty L, Barnett C (2005) Holocene glacier history of Bjørnbreen and climatic reconstruction in central Jotunheimen, Norway, based on proximal glacio-fluvial stream-bank mires. Quat Sci Rev 24:67–90. https://doi.org/10.1016/j.quascirev.2004.07.003

  30. García-Ruiz JM, Palacios D, Andrés N, López-Moreno JI (2020) Neoglaciation in the Spanish Pyrenees: a multiproxy challenge. Mediterr Geosci Rev 2:21–36. https://doi.org/10.1007/s42990-020-00022-9

    Article  Google Scholar 

  31. Porter SC, Denton G (1967) Chronology of the neoglaciation in the North American Cordillera. Am J Sci 265:177–210

    Article  Google Scholar 

  32. García-Ruiz JM, Palacios D, de Andrés N, Valero-Garcés BL, López-Moreno JI, Sanjuán Y (2014) Holocene and ‘Little Ice Age’ glacial activity in the Marboré Cirque, Monte Perdido Massif, Central Spanish Pyrenees. Holocene 24:1439–1452. https://doi.org/10.1177/0959683614544053

    Article  Google Scholar 

  33. Gellatly AF, Grove JM, Suitsur VM (1992) Mid-Holocene glacial activity in the Pyrenees. Holocene 2:266–270

    Article  Google Scholar 

  34. Sancho C, Belmonte A, Bartolomé M, Moreno A, Leunda M, López-Martínez J (2018) Middle-to-late Holocene palaeoenvironmental reconstruction from the A294 ice-cave record (central Pyrenees, northern Spain). Earth Planet Sci Lett 484:135–144. https://doi.org/10.1016/j.epsl.2017.12.027

    Article  CAS  Google Scholar 

  35. Bakke J, Dahl SO, Paasche Ø, Simonsen JR, Kvisvik B, Bakke K, Nesje A (2010) A complete record of Holocene glacier variability at Austre Okstindbreen, northern Norway: an integrated approach. Quatern Sci Rev 29:1246–1262. https://doi.org/10.1016/j.quascirev.2010.02.012

    Article  Google Scholar 

  36. Bartolomé M, Moreno A, Sancho C, Hellstrom J, Belmonte A (2012) Cambios climáticos cortos en el Pirineo Central durante el final del Pleistoceno Superior y Holoceno a partir del registro estalagmítico de la cueva de Seso (Huesca). Geogaceta 51:59–62

    Google Scholar 

  37. Le Roy M, Deline P, Carcaillet J, Schimmelpfennig I, Ermini M, ASTER Team (2017) 10Be exposure dating of the timing of Neoglacial advances in the Ecrins-Pelvoux massif, southern French Alps. Quat Sci Rev 178:118–138. https://doi.org/10.1016/j.quascirev.2017.10.010

  38. Moreno A, Bartolomé M, López-Moreno JI, Pey J, Corella JP, García-Orellana J, Sancho C, Leunda M, Gil-Romera G, González-Sampériz P, Pérez-Mejías C, Navarro F, Otero-García J, Lapazaran J, Alonso-González E, Cid C, López-Martínez J, Oliva-Urcia B, Henrique-Faria S, Oliva-Urcia B, Otero-García J, Lapazaran J, Alonso-González E, Cid C, López-Martínez J, Oliva-Urcia B, Faria SH, Sierra MJ, Millán R, Querol X, Alastuey A, García-Ruiz JM (2021) The case of a southern European glacier which survived Roman and medieval warm periods but is disappearing under recent warming. Cryosphere 15:1157–1172. https://doi.org/10.5194/tc-15-1157-2021

  39. Holzhauser H (1997) Fluctuations of the Grosser Aletsch Glacier and the Groner Glacier during the last 3,200 years: new results. Paläoklimaforschung 24:35–58

    Google Scholar 

  40. Holzhauser H, Magny M, Zumbühl HJ (2005) Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 15:789–801. https://doi.org/10.1191/0959683605hl1853ra

    Article  Google Scholar 

  41. Ivy-Ochs S, Kerschner H, Maisch M, Christl M, Kubik PW, Schlüchter C (2009) Latest Pleistocene and Holocene glacier variations in the European Alps. Quatern Sci Rev 28:2137–2149. https://doi.org/10.1016/j.quascirev.2009.03.009

    Article  Google Scholar 

  42. Nesje A (2009) Latest Pleistocene and Holocene alpine alpine glacier fluctuations in Scandinavia. Quatern Sci Rev 28:2119–2136. https://doi.org/10.1016/j.quascirev.2008.12.016

    Article  Google Scholar 

  43. Oliva M, Ruiz-Fernández J, Barriendos M, Benito G, Cuadrat JM, Domínguez-Castro F, García-Ruiz JM, Giralt S, Gómez-Ortiz A, Hernández A, López-Costas O, López-Moreno JI, López-Sáez JA, Martínez-Cortizas A, Moreno A, Prohom M, Saz MA, Serrano E, Tejedor E, Trigo R, Valero-Garcés B, Vicente-Serrano SM (2018) The Little Ice Age in the Iberian mountains. Earth Sci Rev 177:175–208. https://doi.org/10.1016/j.earscirev.2017.11.010

    Article  Google Scholar 

  44. Solomina ON, Bradley RS, Jomelli V, Geirsdottir A, Kaufman DS, Koch J, McKay NP, Masiokas M, Miller G, Nesje A, Nicolussi K, Owen LA, Putnam AE, Wanner H, Wiles G, Yang B (2016) Glacier fluctuations during the past 2000 years. Quatern Sci Rev 149:61–90. https://doi.org/10.1016/j.quascirev.2016.04.008

    Article  Google Scholar 

  45. Luning S, Schulte L, Garcés-Pastor S, Danladi ID, Galka M (2019) The medieval climate anomaly in the mediterranean region. Paleoceanography Paleoclimatol 34:1625–1649. https://doi.org/10.1029/219PA003734

    Article  Google Scholar 

  46. Moreno A, Pérez A, Frigola J, Nieto-Moreno V, Rodrigo-Gámiz M, Martrat B, González-Sampériz P, Morellón M, Martín-Puertas C, Corella JP, Belmonte A, Sancho C, Cacho I, Herrera G, Canals M, Grimalt JO, Jiménez-Espejo F, Martínez-Ruiz F, Vegas-Vilarubia T, Valero-Garcés BL (2012) The Medieval Climate Anomaly in the Iberian Peninsula reconstructed from marine and lake records. Quatern Sci Rev 43:16–32. https://doi.org/10.1016/j.quascirev.2012.04.007

    Article  Google Scholar 

  47. Schaefer JM, Denton GH, Kaplan M, Putnam A, Finkel RC, Barrell DJA, Andersen BG, Schwartz R, Mackintosh A, Chinn T, Schlüchter C (2009) High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science 324:622–625. https://doi.org/10.1126/science.1169312

    Article  CAS  Google Scholar 

  48. Bradley RS, Jones PD (1992) Climate since 1500 A.D. London, Routledge, p 679

    Google Scholar 

  49. Grove JM (2004) Little Ice Ages: ancient and modern, vol 2. Routledge, London, p 718

    Google Scholar 

  50. Gómez-Ortiz A, Oliva M, Salvador-Franch F, Salvà-Catarineu M, Plana-Castelví JA (2018) Interés geográfico de los documentos históricos en la explicación científica del foco glaciar del Corral de Veleta (Sierra Nevada, España) durante la Pequeña Edad del Hielo. Cuadernos de Investigación Geográfica 44(1):267–292. https://doi.org/10.18172/cig.3415

  51. Mrgic J (2018) Intemperate weather in violent times—narratives from the Western Balkans during the Little Ice Age (17–18th centuries). Geogr Res Notebooks 44(1):137–169. https://doi.org/10.18172/cig.3380

  52. Luterbacher C, Pfister C (2015) The year without a summer. Nat Geosci 8:246–248. https://doi.org/10.1038/ngeo2404

    Article  CAS  Google Scholar 

  53. Yeloff D, Van Geel B (2007) Abandonment of farmland and vegetation succession following the Eurasian plague pandemic of AD 1347–52. J Biogeogr 34(4):575–582. https://doi.org/10.1111/j.1365-2699.2006.01674.x

    Article  Google Scholar 

  54. Dull RA, Nevle R, Woods WI, Bird DK, Avnery S, Denevan WM (2010) The Columbian Encounter and the Little Ice Age: abrupt land use change, fire, and Greenhouse forcing. Ann Assoc Am Geogr 100:751–771. https://doi.org/10.1080/00045608.2010.502432

    Article  Google Scholar 

  55. Nicolussi K, Patzelt G (2000) Discovery of early Holocene and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria. Holocene 10:191–199. https://doi.org/10.1191/095968300666855842

    Article  Google Scholar 

  56. Serrano E, Martín-Moreno R (2018) Surge glaciers during the Little Ice Age in the Pyrenees. Cuadernos de Investigación Geográfica 44(1):213–244. https://doi.org/10.18172/cig.3399

  57. Chenet M, Roussel E, Jomelli V, Grancher D (2010) Asynchronous Little Ice Age glacial maximum extent in southeast Iceland. Geomorphology 114:253–260. https://doi.org/10.1016/j.geomorph.2009.07.012

    Article  Google Scholar 

  58. Carrevedo ML, Frugone M, Latorre C, Maldonado A, Bernárdez P, Prego R, Cárdenas D, Valero-Garcés B (2015) A 700-year record of climate and environmental change from a high Andean lake: Laguna del Maule, central Chile (36°S). Holocene 25:956972. https://doi.org/10.1177/0959683615574584

    Article  Google Scholar 

  59. Rabatel A, Jomelli V, Naveau P, Francou B, Grancher B (2005) Dating of Little Ice Age glacier fluctuations in the Tropical Andes: Charquini glaciers, Bolivia, 16°S. C.R. Geoscience 337:1311–1322. https://doi.org/10.1016/j.crte.2005.07.009

    Article  Google Scholar 

  60. Klein G (2018) Variabilité du manteau neigeux des Alpes européennes entre 1950 et 2016 dans un contexte de changement climatique. Revue bibliographique Climatologie 15:22–45. https://doi.org/10.4267/climatologie.1325

    Article  Google Scholar 

  61. López Moreno JI (2000) Los glaciares del alto valle del Gállego (Pirineo Central) desde la Pequeña Edad del Hielo. Implicaciones en la evolución de la temperatura. Geoforma Ediciones, Logroño, p 77

    Google Scholar 

  62. Diolaiuti GA, Maragno D, D’Agata C, Smiraglia C, Bocchiola D (2011) Glacier retreat and climate change: documenting the last 50 years of Alpine glacier history from area and geometry changes of Dosdè Piazzi glaciers (Lombardi Alps, Italy). Prog Phys Geogr 35(2):161–182. https://doi.org/10.1177/030913331399494

    Article  Google Scholar 

  63. Rico I, Izagirre E, Serrano E, López-Moreno JI (2017) Superficie glaciar actual en los Pirineos: Una actualización para 2016. Pirineos 172:e029. https://doi.org/10.3989/Pirineos.2017.172004

    Article  Google Scholar 

  64. Fischer M (2018) Understanding the response of very small glaciers in the Swiss Alps to climate change. PhD thesis, University of Friburg, p 201

    Google Scholar 

  65. Hoffman MJ, Fountain AG, Achuff JM (2007) 20th-century variations in area of cirque glaciers and glacierets, Rocky Mountain National Park, Rocky Mountains, Colorado, USA. Ann Glaciol 46(1):349–354. https://doi.org/10.3189/17275640077828711233

    Article  Google Scholar 

  66. González-Trueba JJ, Martín Moreno R, Martínez de Pisón E, Serrano E (2008) Little Ice Age glaciation and current glaciers in the Iberian Peninsula. Holocene 18(4):551–568. https://doi.org/10.1177/0959683608089209

    Article  Google Scholar 

  67. Hughes PD (2007) Response of a Montenegro glacier to extreme summer heatwaves in 2003 and 2007. Geogr Ann Ser B 90(4):259–267. https://doi.org/10.1111/j.1468.0459.2008.00344.x

    Article  Google Scholar 

  68. Serandrei-Barbero R, Donnici S, Zecchetto S (2022) Past and future behavior of the valley glaciers in the Italian Alps. Front Earth Sci. https://doi.org/10.3389/feart.2022.972601

    Article  Google Scholar 

  69. Vidaller I, Revuelto J, Izagirre E, Rojas-Heredia F, Alonso-González E, Gascoin S, René P, Berthier E, Rico I, Moreno A, Serrano E, Serreta A, López-Moreno JI (2021) Toward an ice-free mountain range: demise of Pyrenean glaciers during 2011–2020. Geophys Res Lett 48:e2021GL094339. https://doi.org/10.1029/2021GL094339

  70. Chueca J, Julián-Andrés A, Peña-Monné JL (2002) Comparación de la situación de los glaciares del Pirineo español entre el final de la Pequeña Edad del Hielo y la actualidad. Boletín Glaciológico Aragonés 3:13–41

    Google Scholar 

  71. Marti R, Gascoin S, Houet T, Ribière O, Laffly D, Condom T, Monnier S, Schmutz M, Camerlynck C, Tihay JP, Soubeyroux JM, René P (2015) Evolution of Ossue Glacier (French Pyrenees) since the end of the Little Ice Age. Cryosphere 9(5):1773–1795. https://doi.org/10.5194/tc-9-1773-2015

    Article  Google Scholar 

  72. Khromova T, Nosenko G, Nikitin S, Muraviev A, Popova V, Chernova L, Kidyaeva V (2019) Changes in the mountain glaciers of continental Russia during the twentieth to twenty-first centuries. Reg Environ Change 19:1229–1247. https://doi.org/10.1007/s10113-018-1446-z

    Article  Google Scholar 

  73. Kulkarni AV, Bahuguna IM, Rathore BP, Singh SK, Randhawa SS, Sood RK, Dhar S (2007) Glacial retreat in Himalaya using Indian remote sensing satellite data. Curr Sci 92(1):69–74

    Google Scholar 

  74. Martínez de Pisón E (2000) Cuadernos de montaña. Ediciones Temas de Hoy, Madrid, p 275

    Google Scholar 

  75. Bushan S, Syed TH, Arendt AA, Kulkarni AV, Sinha D (2018) Assessing controls on mass budget and surface velocity variations of glaciers in Western Himalaya. Sci Rep 8:8885. https://doi.org/10.1038/s41598-018-27014-y

  76. Patel LK, Sharma P, Singh A, Oulkar S, Pratap B, Thamban M (2021) Influence of supraglacial debris thickness on thermal resistance of the glaciers of Chandra Basin, Western Himalaya. Front Earth Sci 9:706312. https://doi.org/10.3389/feart.2021.706312

  77. Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram, Himalaya. Mt Res Dev 25(4):332–340

    Article  Google Scholar 

  78. López-Moreno JI, Valero-Garcés B, Mark B, Condom T, Revuelto J, Azorín-Molina C, Frugone M, Vicente-Serrano SM, Alejo-Cochachin J (2017) Hydrological and depositional processes associated with recent glacier recession in Yanamarey catchment, Cordillera Blanca (Peru). Sci Total Environ 579:272–282. https://doi.org/10.1016/j.scitotenv.11.107

    Article  Google Scholar 

  79. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andeanglaciers: past, present and future. Earth Sci Rev 89:79–96

    Article  Google Scholar 

  80. Salzmann N, Huggel C, Rohrer M, Silverio W, Mark BG, Burns P, Portocarrero C (2013) Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere 7:103–118

    Article  Google Scholar 

  81. Zapata M (2009) Tropical glaciers of the Andes. In: Mountains and climate change. From understanding to action. University of Bern, p 26

    Google Scholar 

  82. Morán-Tejeda E, Ceballos JL, Peña K, Lorenzo-Lacruz J, López-Moreno JI (2018) Recent evolution and associated hydrological dynamics of a vanishing tropical Andean glacier: Glaciar de Conejeras, Colombia. Hydrol Earth Syst Sci 22:5445–5461. https://doi.org/10.5194/hess-22-5445-2018

  83. Permana DS, Thompson LG, Mosley-Thompson E, Davis ME, Lin PN, Nicolas JP, Bolzan JF, Bird BW, Mikhalenko VN, Gabrielli P, Zagorodnov V, Mountain KR, Schotterer U, Hanggoro W, Habidie MN, Kaize Y, Gunawan D, Setyadi G, Susanto RD, Fernández A, Mark BG (2019) Disappearance of the last tropical glaciers in the Western Pacific Warm Pool (Papua, Indonesia) appears imminent. PNAS 116:26382–26388. https://doi.org/10.1073/pnas.1822037116

    Article  CAS  Google Scholar 

  84. Prinz R, Heller A, Ladner M, Nicholson LI, Kaser G (2018) Mapping the loss of Mt. Kenya’s glaciers: an example of the challenges of satellite monitoring of very small glaciers. Geosciences 8(5):174. https://doi.org/10.3390/geosciences8050174

  85. Kraaijenbrink PDA, Stigter EE, Yao T, Immerzeel WW (2021) Climate change decisive for Asia’s snow meltwater supply. Nat Clim Change 11:591–597. https://doi.org/10.1038/s41558-021-01074-x

  86. Ives JD (1974) Permafrost. In: Ives JD, Barry R (eds) Arctic and Alpine environments. Methuen, New York, pp 159–194

    Google Scholar 

  87. French HM (2017) The periglacial environment. Wiley, Essex, p 544

    Book  Google Scholar 

  88. Harris C (2004) Permafrost. In: Goudie AS (ed) Encyclopedia of geomorphology, vol 2. Routledge, London, pp 777–779

    Google Scholar 

  89. Janke JR, Price LW (2013) Mountain landforms and geomorphic processes. In: Price MF, Byers AC, Friend DA, Kohler T, Price LW (eds) Mountain geography. Physical and human dimensions. University of California Press, Berkeley, pp 127–166

    Google Scholar 

  90. Hauck C, Vonder Mühll D, Hoelzle M (2005) Permafrost monitoring in high mountain areas using a coupled geophysical and meteorological approach. In: de Jong C, Collins D, Ranzi R (eds) Climate and hydrology in mountain areas. Wiley, Chichester, pp 59–71

    Google Scholar 

  91. Ives JD, Fahey BD (1971) Permafrost occurrence in the Front Range, Colorado Rocky Mountains, USA. J Glaciol 58:105–111. https://doi.org/10.3189/S0022143000013034

    Article  Google Scholar 

  92. Bayard D, Stähli M (2005) Effects of frozen soil on the groundwater recharge in Alpine areas. In: de Jong C, Collins D, Ranzi R (eds) Climate and hydrology in mountain areas. Wiley, Chichester, pp 73–83

    Chapter  Google Scholar 

  93. Yoshikawa K, Hardy DR, Narita K, Bolton WR, Stanislovskaya J, Sparrow EB (2021) Ground thermal regimes and implications for permafrost distribution on Kilimanjaro, Tanzania. Arct Antarct Alp Res 53(1):127–145. https://doi.org/10.1080/15230430.2021.1903375

    Article  Google Scholar 

  94. Vieira G, Mora C, Faleh A (2017) New observations indicate the possible presence of permafrost in North Africa (Djebel Toubkal, High Atlas, Morocco). Criosphere 11(4):1691–1705. https://doi.org/10.5194/tc-11-1691-2017

    Article  Google Scholar 

  95. Serrano E, Pisabarro A, López-Moreno JI, Gómez-Lende M, Martín-Moreno R, Rico I (2020) Mapping the potential distribution of frozen ground in Tucarroya (Monte Perdido Massif, The Pyrenees). Cuadernos de Investigación Geográfica 46(2):395–411. https://doi.org/10.18172/cig.4414

  96. Marcer M, Bodin X, Brenning A, Schoeneich P, Charvet R, Gottardi F (2017) Permafrost Favorability Index: spatial modeling in the French Alps using a rock glacier inventory. Front Earth Sci 5:105. https://doi.org/10.3389/feart.2017.00105

  97. Scotti R, Crosta GB, Villa A (2017) Destabilization of creeping permafrost: the Plator rock glacier case study (Central Italian Alps). Permafrost Periglac Process 28:224–236. https://doi.org/10.1002/ppp.1917

    Article  Google Scholar 

  98. Biskaborn BK, Smith SL, Noetzli J et al (2019) Permafrost is warming at a global scale. Nat Commun 10:264. https://doi.org/10.1038/s41467-018-08240-4

    Article  CAS  Google Scholar 

  99. Palmtag J, Obu J, Kuhry P, Richter A, Siewert MB, Weiss N, Westermann S, Hugelius G (2022) A high spatial resolution soil carbon and nitrogen dataset for the northern permafrost region based on circumpolar land cover upscaling. Earth Syst Sci Data 14:4095–4110. https://doi.org/10.5194/essd-14-4095-2022

    Article  Google Scholar 

  100. Liu G, Zhao L, Li R, Wu T, Jiao K, Ping C (2017) Permafrost warming in the context of step-wise climate change in the Tien Shan mountains, China. Permafrost Periglac Process 28(1):130–139. https://doi.org/10.1002/ppp.1885

    Article  Google Scholar 

  101. Gómez-Lende M, Serrano E (2021) Cave mountain permafrost environments in the Picos de Europa and their implications. Cuaternario y Geomorfología 35(3–4):55–76. https://doi.org/10.17735/cyg.v35i3-4.89377

  102. Leunda M, González-Sampériz P, Gil-Romera G, Bartolomé M, Belmonte-Ribas A, Gómez-García D, Kaltenrieder P, Rubiales JM, Schwörer C, Tinner W, Morales-Molino C, Sancho C (2019) Ice cave reveals environmental forcing of long-term Pyrenean tree line dynamics. J Ecol 107(2):814–828. https://doi.org/10.1111/1365-2745.13077

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. García-Ruiz .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Ruiz, J.M., Arnáez, J., Lasanta, T., Nadal-Romero, E., López-Moreno, J.I. (2024). Ice and Glaciers in the Mountains. In: Mountain Environments: Changes and Impacts. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-51955-0_7

Download citation

Publish with us

Policies and ethics