Skip to main content

The Climate of the Mountains, Originality and Spatial Variability

  • Chapter
  • First Online:
Mountain Environments: Changes and Impacts

Abstract

There are many features that make mountains a complex system where everything is interrelated. Elevation is perhaps the most important of these, together with steep slopes, as they condition many other factors, including climate, the spatial distribution of vegetation and soils, the transfer of sediments between slopes and valley bottoms and, without a doubt, land uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barry RG (1992) Mountain weather and climate. Routledge, London, p 402

    Google Scholar 

  2. Barry RG, Van Wie CC (1974) Topo and microclimatology in alpine areas. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 73–83

    Google Scholar 

  3. Price LW, Geist V (2013) Mountain wildlife. In: Price MF, Byers AC, Friend DA, Kohler T, Price LW (eds) Mountain geography. Berkeley, University of California Press, Physical and human dimensions, pp 221–252

    Google Scholar 

  4. Grover RF (1974) Man living at high altitudes. In: Ives JD, Barry RG (eds) Arctic and Alpine environments. Methuen, London, pp 817–830

    Google Scholar 

  5. Bach AJ, Price LW (2013) Mountain climate. In: Price MF, Byers AC, Friend DA, Kohler T, Price LW (eds) Mountain geography. Berkeley, University of California Press, Physical and human dimensions, pp 41–84

    Google Scholar 

  6. Kochendorfer J, Earle ME, Hodyss D, Reverdin A, Roulet YA, Nitu R, Rasmussen R, Landolt S, Buisán S, Laine T (2020) Undercatch adjustments for tipping-bucket gauge measurements of solid precipitation. J Hydrometeorol 21(6):1193–1205. https://doi.org/10.1175/JHM-D-19-0256.1

    Article  Google Scholar 

  7. Barry RG (2012) Recent advances in mountain climate research. Theoret Appl Climatol 110:549–553. https://doi.org/10.1007/s00704-012-0695-x

    Article  Google Scholar 

  8. Wilkinson F (2020) A new window for observing the weather. National Geogr July 2020, pp 72–85

    Google Scholar 

  9. Ozenda P (2002) Perspectives pour une géobiologie des montagnes. Presses Polytechniques et Universitaires Romandes, Lausanne, p 195

    Google Scholar 

  10. Francou B (1993) Hautes montagnes. Passion d'explorations. Paris, Masson, p 202

    Google Scholar 

  11. Rolland C (2003) Spatial and seasonal variations of air temperature lapse rates in Alpine regions. J Clim 16:1032–1046

    Article  Google Scholar 

  12. García Ruiz JM, Puigdefábregas J, Creus J (1985) Los recursos hídricos superficiales del Alto Aragón. Huesca, Instituto de Estudios Altoaragoneses, p 224

    Google Scholar 

  13. Douguedroit A, De Saintignon MF (1981) Décroissance des temperatures mensuelles et annuelles avec l’altitude dans les Alpes du Sud et en Provence (series 1959–1978). Eaux et climat Mélanges Géographiques Offerts en Hommage à Charles-Pierre Péguy, ER 30:179–194

    Google Scholar 

  14. Navarro-Serrano F, López-Moreno JI, Domínguez-Castro F, Alonso-González E, Azorín-Molina C, El-Kenawy A, Vicente-Serrano SM (2020) Maximum and minimum air temperature lapse rates in the Andean region of Ecuador and Peru. Int J Climatol 40:6150–6168. https://doi.org/10.1002/joc.6574

    Article  Google Scholar 

  15. Navarro-Serrano F, López-Moreno JI, Azorín-Molina C, Alonso-González E, Tomás Burguera M, Sanmiguel-Vallelado A, Revuelto J, Vicente-Serrano SM (2018) Estimation of near-surface air temperature lapse rates over continental Spain and its mountain areas. Int J Climatol 38:3233–3249 https://doi.org/10.1002/joc.5497

  16. Rolland C, Petitcolas V, Michalet R (1998) Changes in radial tree growth for Picea abies, Larix decidua, Pinus cembra and Pinus uncinata near the alpine timberline since 1750. Trees 13:40–53. https://doi.org/10.1007/PL00009736

    Article  Google Scholar 

  17. Rucker M, Banta RM, Steyn DG (2008) Along-valley structure of daytime thermally driven flows in the Wipp Valley. J Appl Meteorol Climatol 47:733–751. https://doi.org/10.1175/2007JAMC1319.1

  18. Puigdefábregas J (1970) Características de la inversión térmica en el extremo oriental de la Depresión Interior Altoaragonesa. Pirineos 96:21–45

    Google Scholar 

  19. Lundquist JD, Pepin N, Rochford C (2008) Automated algorithm for mapping regions of cold-air pooling in complex terrain. J Geophys Res Atmos 113 (D22). https://doi.org/10.1029/2008JD009879

  20. Douguedroit A, de Saintignon MF (1984) Les gradients de temperatures et de precipitations en montagne. Rev de Géog Alpine 72(2–4):225–240

    Google Scholar 

  21. Price LW (1981) Mountains and man. University of California Press, Berkeley, p 508

    Google Scholar 

  22. Bandyopadhway J, Rodda JC, Kattelmann R, Kundzewicz ZW, Kraemer D (1997) Highland waters—a resource of global significance. In: Messerli B, Ives JD (eds) Mountains of the world: a global priority. The Parthenon Publishing Group, London, pp 131–155

    Google Scholar 

  23. Ritter A, Regalado CM, Aschan G (2008) Fog water collection in a subtropical elfin laurel forest of the Garajonay National Park (Canary Islands): a combined approach using artificial fog catchers and a physically based impaction model. J Hydrometeorol 9(5):920–935. https://doi.org/10.1175/2008JHM992.1

    Article  Google Scholar 

  24. Regalado CM, Ritter A (2017) The performance of three fog gauges under field conditions and its relationship with meteorological variables in an exposed site in Tenerife (Canary Islands). Agric For Meteorol 233:80–91. https://doi.org/10.1016/j.agrformet.2016.11.009

    Article  Google Scholar 

  25. Abdul-Wahab SA, Al-Damkhi AM, Al Hinai H, Al-Najar KA, Al-Kalbani MS (2010) Total fog and rainwater collection in the Dhofar region of the Sultanate of Oman during the monsoon season. Water Int 35(1):100–109. https://doi.org/10.1080/02508060903502984

    Article  Google Scholar 

  26. Echeverría P, Domínguez C, Villacís M, Violette S (2020) For harvesting potential for domestic rural use and irrigation in San Cristobal Island, Galapagos, Ecuador. Cuad de Inv Geográfica 46(2):563–580. https://doi.org/10.18172/cig.4382

  27. Olivier J (2002) Fog-water harvesting along the west coast of South Africa: a feasibility study. Water SA 28(4):349–360. https://doi.org/10.4314/wsa.v28i4.4908

    Article  Google Scholar 

  28. Martín Vide J (1989) Lluvias torrenciales en España. Norba Rev de Geografía 6–7:63–70

    Google Scholar 

  29. López Bermúdez F, Romero Díaz MA (1992–1993) Génesis y consecuencias erosivas de lluvias de alta intensidad en la región mediterránea. Cuad de Inv Geográfica 18–19:7–28. https://doi.org/10.18172/cig.1000

  30. De Luis M, González-Hidalgo JC, Raventós J, Sánchez JR, Cortina J (1997) Distribución espacial de la concentración de lluvia y agresividad en el territorio de la Comunidad Valenciana. Quat Geomorphol 11(3–4):33–44

    Google Scholar 

  31. Serrano-Notivoli R, Martín-Vide J, Saz MA, Longares LA, Beguería S, Sarricolea P, Meseguer-Ruiz O, De Luis M (2018) Spatio-temporal variability of daily precipitation concentration in Spain based on a high resolution gridded data set. Int J Climatol 38:e518–e530. https://doi.org/10.1002/joc.5387

    Article  Google Scholar 

  32. Peña-Angulo D, Nadal-Romero E, González-Hidalgo J, Albaladejo J, Andreu V, Bagarello V, Batalla RJ, Bernal S, Bienes R, Campo J, Campo-Bescós M et al (2019) Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. J Hydrol 571:390–405. https://doi.org/10.1016/j.hydrol.2019.01.059

  33. Martín-Vide J, Moreno-García MC, López-Bustins JA (2021) Synoptic causes of torrential rainfall in south-eastern Spain. Cuad de Inv Geográfica 47(1):143–162. https://doi.org/10.1872/cig.4696

    Article  Google Scholar 

  34. Romero-Díaz MA (2021) Floods in Spain's Mediterranean region: causes and effects. Cuad de Inv Geográfica 47(1):3–12. https://doi.org/10.18172/cig.5058

  35. Senciales-González JM, Ruiz-Sinoga JD (2021) Features of weather types involving heavy rainfall along the southern Spanish Mediterranean. Cuad de Inv Geográfica 47(1):221–242. https://doi.org/10.18172/cig.4765

  36. Flohn H (1974) Contribution to a comparative meteorology in mountain areas. In: Ives JD, Barry RG (eds) Arctic and Alpine environments. Methuen, London, pp 55–71

    Google Scholar 

  37. Schwarb M, Daly C, Frei C, Schär C (2001) Mittlere Jährliche Niederschlagshöhen im europäischen Alpenraum. In: Gruppe für Hydrologie, Universität Bern, Hydrologischer Atlas der Schweiz. Berne, Landeshydrologie, Budesamt für Wasser und Geologie

    Google Scholar 

  38. Lauer W (1975) Klimatische Grundzüge der Höhenstufung tropischer Gebirge. Tagungsbericht un Wissenschaftliche Abhandlungen 40:76–90

    Google Scholar 

  39. Lauscher F (1976) Weltweite Typen der Höhenabhängigkeit des Niederschlags. Wetter und Leben 28:80–90

    Google Scholar 

  40. Price LW (1978) Mountains of the Pacific Northwest: a study in contrast. Arct Alp Res 10:465–478

    Article  Google Scholar 

  41. Das PK (1983) The climate of the Himalayas. In: Singh TV, Kaur J (eds) Himalayas: mountains and man. Lucknow, Print House, pp 1–9

    Google Scholar 

  42. Reiter ER, Heuberger H (1960) A synoptic example of the retreat of the Indian summer monsoon. Geogr Ann 42:17–35

    Google Scholar 

  43. Ives, JD, Messerli B (1989) The Himalayan dilemma. Reconsiling development and conservation. Routledge, London, p 295

    Google Scholar 

  44. Price MF (2015) Mountains: a very short introduction. Oxford University Press, Oxford, p 134

    Google Scholar 

  45. Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol Earth Syst Sci 8:47–61

    Google Scholar 

  46. Zamora R, Pérez-Luque AJ, Guerrero-Alonso PD, Merino-Ceballos M, Ros-Candeira A (2021) Bridging macro- and microclimate in mountain landscapes: a conceptual and instrumental approach. Ecosystems 30(1):2166. https://doi.org/10.7818/ECOS.2166

  47. Navarro-Serrano F, López-Moreno JI, Azorín-Molina C, Alonso-González E, Aznarez-Balta M, Buisán ST, Revuelto J (2020) Elevation effects on air temperature in a topographically complex mountain valley in the Spanish Pyrenees. Atmosphere 11:656. https://doi.org/10.3390/atmos11060656

    Article  Google Scholar 

  48. Case BS, Buckley HL (2015) Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand’s southern beech trees. PeerJ 3:e13334. https://doi.org/10.7717/peerj.1334

    Article  Google Scholar 

  49. Kattel DB, Yao T, Yang W, Gao Y, Tian L (2015) Comparison of temperature lapse rates from the northern to the southern slopes of the Himalayas. Int J Climatol 35:4431–4443. https://doi.org/10.1002/joc.4297

    Article  Google Scholar 

  50. Hanna E, Mernild S, Yde J, Villkiers S (2017) Surface air temperature fluctuations and lapse rates on Olivares Gamma Glacier, Rio Olivares Basin, Central Chile, from a novel meteorological sensor network. Adv Meteorol 2017, 6581537. https://doi.org/10.1155/2017/6581537. https://doi.org/10.1155/2017/6581537

  51. Benavides R, Montes F, Rubio A, Osoro K (2007) Geostatistical modelling of air temperature in a mountainous region of northern Spain. Agric For Meteorol 146:173–188. https://doi.org/10.1016/j.agrformet.2007.05.014

    Article  Google Scholar 

  52. Pagès M, Pepin N, Miró J (2017) Measurement and modelling of temperature cold pools in the Cerdanya valley (Pyrenees), Spain. Meteorol Appl 24:290–302. https://doi.org/10.1002/met.1630

    Article  Google Scholar 

  53. Lundquist J, Lott F (2008) Using inexpensive temperature sensors to monitor the duration and heterogeneity of snow-covered areas. Water Resour Res 44:1–6. https://doi.org/10.1029/2008WR007035

    Article  Google Scholar 

  54. Minder JR, Mote PW, Lundquist JD (2010) Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J Geophys Res Atmos 115:1–13. https://doi.org/10.1029/2009JD013493

  55. Daly C, Conklin DR, Unsworth MH (2010) Local atmospheric decoupling in complex topography alters climate change impacts. Int J Climatol 30:1857–1864. https://doi.org/10.1002/joc.2007

  56. Hiemstra CA, Liston GE, Reiners WA (2002) Snow redistribution by wind and interactions with vegetation at upper treeline in the Medicine Bow Mountains, Wyoming, U.S.A. Arct Antarct Alp Res 34:262–273

    Article  Google Scholar 

  57. Liston GE, Haehnel RB, Sturm M, Hiemstra CA, Berezovskaya S, Tabler RD (2007) Simulating complex snow distributions in windy environments using SnowTran-3D. J Glaciol 53:241–256. https://doi.org/10.3189/172756507782202865

    Article  Google Scholar 

  58. Revuelto J, López-Moreno JI, Azorín-Molina C, Vicente-Serrano SM (2014) Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence. Cryosphere 8:1989–2006. https://doi.org/10.5194/tc-8-1989-2014

    Article  Google Scholar 

  59. López-Moreno JI, Revuelto J, Fassnacht S, Azorín-Molina C, Vicente-Serrano SM, Morán-Tejeda E, Sextone GA (2014) Snowpack variability across various spatio-temporal resolutions. Hydrol Process 29(6):384–396. https://doi.org/10.1002/hyp.10245

    Article  Google Scholar 

  60. Lebgue T, Sosa M, Soto R (2005) La flora de las barrancas del Cobre, Chihuahua, México. Ecología Apl 4(1–2):17–23

    Google Scholar 

  61. García MB, Domingo D, Pizarro M, Font X, Gómez D, Ehrlén J (2020) Rocky habitats as microclimatic refuges for biodiversity. A close-up thermal approach. Environ Exp Bot 170:103886. https://doi.org/j.envexpbot.2019.103886

  62. Birks HJB, Willis KJ (2008) Alpines, trees, and refugia in Europe. Plant Ecolog Divers 1(2):147–160. https://doi.org/10.1080/17550870802349146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. García-Ruiz .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Ruiz, J.M., Arnáez, J., Lasanta, T., Nadal-Romero, E., López-Moreno, J.I. (2024). The Climate of the Mountains, Originality and Spatial Variability. In: Mountain Environments: Changes and Impacts. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-51955-0_5

Download citation

Publish with us

Policies and ethics