Skip to main content

Neural Architecture Search for Placenta Segmentation in 2D Ultrasound Images

  • Conference paper
  • First Online:
Advances in Computational Intelligence. MICAI 2023 International Workshops (MICAI 2023)

Abstract

Monitoring the placenta during pregnancy can lead to early diagnosis of anomalies by observing their characteristics, such as size, shape, and location. Ultrasound is a popular medical imaging technique used in placenta monitoring, whose advantages include the non-invasive feature, price, and accessibility. However, images from this domain are characterized by their noise. A segmentation system is required to recognize placenta features. U-Net architecture is a convolutional neural network that has become popular in the literature for medical image segmentation tasks. However, this type is a general-purpose network that requires great expertise to design and may only be applicable in some domains. The evolutionary computation overcomes this limitation, leading to the automatic design of convolutional neural networks. This work proposes a U-Net-based neural architecture search algorithm to construct convolutional neural networks applied in the placenta segmentation on 2D ultrasound images. The results show that the proposed algorithm allows a decrease in the number of parameters of U-Net, ranging from 80 to 98%. Moreover, the segmentation performance achieves a competitive level compared to U-Net, with a difference of 0.012 units in the Dice index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bi, Y., Xue, B., Zhang, M.: An automatic feature extraction approach to image classification using genetic programming. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 421–438. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_29

    Chapter  Google Scholar 

  2. Bi, Y., Xue, B., Zhang, M.: An evolutionary deep learning approach using genetic programming with convolution operators for image classification. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 3197–3204. IEEE (2019)

    Google Scholar 

  3. Bi, Y., Zhang, M., Xue, B.: An automatic region detection and processing approach in genetic programming for binary image classification. In: 2017 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6 (2017). https://doi.org/10.1109/IVCNZ.2017.8402469

  4. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11, 125 (2020). https://doi.org/10.3390/INFO11020125, https://www.mdpi.com/2078-2489/11/2/125/htm

  5. Fan, Z., Wei, J., Zhu, G., Mo, J., Li, W.: Evolutionary neural architecture search for retinal vessel segmentation. arXiv preprint arXiv:2001.06678 (2020)

  6. Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)

    MathSciNet  Google Scholar 

  7. Grannum, P.A., Berkowitz, R.L., Hobbins, J.C.: The ultrasonic changes in the maturing placenta and their relation to fetal pulmonic maturity. Am. J. Obstet. Gynecol. 133(8), 915–922 (1979)

    Article  Google Scholar 

  8. Han, M., et al.: Automatic segmentation of human placenta images with U-net. IEEE Access 7, 180083–180092 (2019). https://doi.org/10.1109/ACCESS.2019.2958133

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  10. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  12. Hu, R., Singla, R., Yan, R., Mayer, C., Rohling, R.N.: Automated placenta segmentation with a convolutional neural network weighted by acoustic shadow detection. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6718–6723. IEEE (2019). https://doi.org/10.1109/EMBC.2019.8857448

  13. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2018)

    Google Scholar 

  14. Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    Google Scholar 

  15. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  16. McKenna, D., Tharmaratnam, S., Mahsud, S., Dornan, J.: Ultrasonic evidence of placental calcification at 36 weeks’ gestation: maternal and fetal outcomes. Acta Obstet. Gynecol. Scand. 84(1), 7–10 (2005)

    Article  Google Scholar 

  17. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 497–504 (2017)

    Google Scholar 

  20. Taghanaki, S.A., et al.: Combo loss: handling input and output imbalance in multi-organ segmentation. Comput. Med. Imaging Graph. 75, 24–33 (2019). https://doi.org/10.1016/j.compmedimag.2019.04.005

    Article  Google Scholar 

  21. Turner, A.J., Miller, J.F.: The importance of topology evolution in NeuroEvolution: a case study using cartesian genetic programming of artificial neural networks. In: Bramer, M., Petridis, M. (eds.) Research and Development in Intelligent Systems XXX, pp. 213–226. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02621-3_15

    Chapter  Google Scholar 

  22. Zimmer, V.A., et al.: A multi-task approach using positional information for ultrasound placenta segmentation. In: Hu, Y., et al. (eds.) ASMUS/PIPPI -2020. LNCS, vol. 12437, pp. 264–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60334-2_26

    Chapter  Google Scholar 

Download references

Acknowledgments

The first author acknowledges support from the Mexican National Council of Humanities, Science, and Technology (CONAHCyT) through a scholarship to pursue graduate studies at the University of Veracruz. The authors thankfully acknowledge computer resources, technical advice, and support provided by Laboratorio Nacional de Supercómputo del Sureste de México (LNS), a member of the CONAHCYT national laboratories, with project No. 202201016n.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Fuentes-Tomás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fuentes-Tomás, J.A., Acosta-Mesa, H.G., Mezura-Montes, E., Jiménez, R.H. (2024). Neural Architecture Search for Placenta Segmentation in 2D Ultrasound Images. In: Calvo, H., Martínez-Villaseñor, L., Ponce, H., Zatarain Cabada, R., Montes Rivera, M., Mezura-Montes, E. (eds) Advances in Computational Intelligence. MICAI 2023 International Workshops. MICAI 2023. Lecture Notes in Computer Science(), vol 14502. Springer, Cham. https://doi.org/10.1007/978-3-031-51940-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51940-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51939-0

  • Online ISBN: 978-3-031-51940-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics