Skip to main content

Graphene Nanoplatelets in Brief

  • Chapter
  • First Online:
Graphene-Bearing Polymer Composites

Abstract

This chapter provides a concise overview of graphene nanoplatelets (GNPs) and their significance in polymer composites. GNPs, comprising stacked graphene sheets, exhibit exceptional mechanical, thermal, and electrical properties. Their high aspect ratio and large surface area make them ideal reinforcements in polymer matrices, enhancing mechanical strength and electrical conductivity. The chapter discusses synthesis methods, dispersion techniques, and characterization approaches for GNPs. Furthermore, it explores their diverse applications in areas such as EMI shielding, flame retardancy, and beyond. By highlighting the key characteristics and applications of GNPs, this chapter is a foundational resource for understanding their role in advancing graphene-bearing polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Colapinto, Material question. Graphene may be the most remarkable substance ever discovered. But what’s it for. The New Yorker 22, 29 (2014)

    Google Scholar 

  2. H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)

    Article  CAS  Google Scholar 

  3. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011)

    Article  CAS  Google Scholar 

  4. K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13(6), 624–630 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. G. Armstrong, An introduction to polymer nanocomposites. Eur. J. Phys. 36(6), 063001 (2015)

    Article  Google Scholar 

  6. J.T. Orasugh, S.S. Ray, Functional and structural facts of effective electromagnetic interference shielding materials: a review. ACS Omega 8(9), 8134–8158 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J.T. Orasugh, S.S. Ray, Graphene-based electrospun fibrous materials with enhanced EMI shielding: recent developments and future perspectives. ACS Omega 7(38), 33699–33718 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Shi, A. Yao, J. Han, H. Wang, Y. Feng, L. Fu, F. Yang, P. Song, Architecting fire safe hierarchical polymer nanocomposite films with excellent electromagnetic interference shielding via interface engineering. J. Colloid Interface Sci. 640, 179–191 (2023)

    Article  CAS  PubMed  Google Scholar 

  9. A. Łapińska, N. Grochowska, K. Filak, P. Michalski, K.R. Szymański, P.A. Zaleski, K. Dydek, A. Daniszewska, K. Żerańska, A. Dużyńska, S. Kowalczyk, A. Plichta, Non-metallic multifunctional PVDF—Graphene nanoplatelets nanocomposites as an effective electromagnetic shield, thermal and electrical conductor. Mater. Today Adv. 18, 100365 (2023)

    Article  Google Scholar 

  10. B. Lee, U. Hwang, J. Kim, S.-H. Kim, K. Choi, I.-K. Park, C. Choi, J. Suhr, J.-D. Nam, Highly dispersed graphene nanoplatelets in polypropylene composites by employing high-shear stress for enhanced dielectric properties and frequency-selective electromagnetic interference shielding capability. Compos. Commun. 37, 101409 (2023)

    Article  Google Scholar 

  11. W. Xu, X. Wang, Y. Wu, W. Li, C. Chen, Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 363, 138–151 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P. Dubois, New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R. Rep. 63(3), 100–125 (2009)

    Article  Google Scholar 

  13. M.N. Uddin, L. Le, R. Nair, R. Asmatulu, Effects of graphene oxide thin films and nanocomposite coatings on flame retardancy and thermal stability of aircraft composites: a comparative study. J. Eng. Mater. Technol. 141(3), 031004 (2019)

    Article  CAS  Google Scholar 

  14. S. Ran, F. Fang, Z. Guo, P. Song, Y. Cai, Z. Fang, H. Wang, Synthesis of decorated graphene with P, N-containing compounds and its flame retardancy and smoke suppression effects on polylactic acid. Compos. B Eng. 170, 41–50 (2019)

    Article  CAS  Google Scholar 

  15. X. Wang, E.N. Kalali, D.-Y. Wang, Two-dimensional inorganic nanomaterials: a solution to flame retardant polymers. Nano Adv 1, 155 (2016)

    Google Scholar 

  16. S.S. Ray, A. Geberekrstos, T.S. Muzata, J.T. Orasugh, in Process-Induced Phase Separation in Polymer Blends: Materials, Characterization, Properties, and Applications (Carl Hanser Verlag GmbH Co KG, 2023)

    Google Scholar 

  17. K. Malkappa, J. Bandyopadhyay, V. Ojijo, S.S. Ray, Superior flame retardancy, antidripping, and thermomechanical properties of polyamide nanocomposites with graphene-based hybrid flame retardant. J. Appl. Polym. Sci. 139(37), e52867 (2022)

    Article  CAS  Google Scholar 

  18. B.S. Singu, K.R. Yoon, Exfoliated graphene-manganese oxide nanocomposite electrode materials for supercapacitor. J. Alloy. Compd. 770, 1189–1199 (2019)

    Article  CAS  Google Scholar 

  19. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)

    Article  CAS  Google Scholar 

  20. L.T. Temane, J.T. Orasugh, S.S. Ray, Adsorptive removal of pollutants using graphene-based materials for water purification, in Two-Dimensional Materials for Environmental Applications. ed. by N. Kumar, R. Gusain, S. Sinha Ray (Springer International Publishing, Cham, 2023), pp.179–244

    Chapter  Google Scholar 

  21. J.T. Orasugh, V. Saasa, S.S. Ray, B. Mwakikunga, Supersensitive metal free in-situ synthesized graphene oxide@cellulose nanocrystals acetone sensitive bioderived sensors. Int. J. Biol. Macromol. 241, 124514 (2023)

    Article  CAS  PubMed  Google Scholar 

  22. J.T. Orasugh, S.S. Ray, Nanocellulose-graphene oxide-based nanocomposite for adsorptive water treatment, in Functional Polymer Nanocomposites for Wastewater Treatment. ed. by M.J. Hato, S. Sinha Ray (Springer International Publishing, Cham, 2022), pp.1–53

    Google Scholar 

  23. A. Zaman, J.T. Orasugh, P. Banerjee, S. Dutta, M.S. Ali, D. Das, A. Bhattacharya, D. Chattopadhyay, Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions. Carbohyd. Polym. 246, 116661 (2020)

    Article  CAS  Google Scholar 

  24. N. Kumar, J.R. Rodriguez, V.G. Pol, A. Sen, Facile synthesis of 2D graphene oxide sheet enveloping ultrafine 1D LiMn2O4 as interconnected framework to enhance cathodic property for Li-ion battery. Appl. Surf. Sci. 463, 132–140 (2019)

    Article  CAS  Google Scholar 

  25. S. Sadhukhan, A. Bhattacharyya, D. Rana, T.K. Ghosh, J.T. Orasugh, S. Khatua, K. Acharya, D. Chattopadhyay, Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater. Chem. Phys. 247, 122906 (2020)

    Article  CAS  Google Scholar 

  26. R. Joshi, A. De Adhikari, A. Dey, I. Lahiri, Green reduction of graphene oxide as a substitute of acidic reducing agents for supercapacitor applications. Mater. Sci. Eng. B 287, 116128 (2023)

    Article  CAS  Google Scholar 

  27. A.T. Lawal, Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 141, 111384 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. I. Freestone, N. Meeks, M. Sax, C. Higgitt, The Lycurgus cup—a roman nanotechnology. Gold bulletin 40, 270–277 (2007)

    Article  CAS  Google Scholar 

  29. J. Bandyopadhyay, S.S. Ray, Are nanoclay-containing polymer composites safe for food packaging applications?—An overview. J. Appl. Polym. Sci. 136(12), 47214 (2019)

    Article  Google Scholar 

  30. D.I. Bower, in An Introduction to Polymer Physics (American Association of Physics Teachers, 2003)

    Google Scholar 

  31. R. Markets, Polymer Nanocomposites Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023–2028—Product Image Polymer Nanocomposites Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023–2028. https://www.researchandmarkets.com/reports/5769248/polymer-nanocomposites-market-global-industry?gclid=CjwKCAjw3ueiBhBmEiwA4BhspAUVtmANDRVMD9KwWgaAgFnhlqNOxAx2jef1UWXabwcTtnepQtnSwhoCfRIQAvD_BwE. Accessed 9 May 2023

  32. J.C. Huang, EMI shielding plastics: a review. Adv. Polym. Technol. J. Polym. Process. Inst. 14(2), 137–150 (1995)

    Article  CAS  Google Scholar 

  33. A. Polak, J. Margolis, Conducting Polymers and Plastics (Chapman & Hall, New York, 1989), p.4

    Google Scholar 

  34. S.A. Schelkunoff, Electromagnetic Waves (1943)

    Google Scholar 

  35. Weibler, J.; Enclosures, L., Properties of Metals used for RF shielding. EMC Test and Design 1993, 100.

    Google Scholar 

  36. J.T. Orasugh, C. Pal, M.S. Ali, D. Chattopadhyay, Electromagnetic interference shielding property of polymer-graphene composites, in Polymer Nanocomposites Containing Graphene, ed. by M. Rahaman, L. Nayak, I.A. Hussein, N.C. Das (Woodhead Publishing, 2022), pp. 211–243

    Google Scholar 

  37. J.T. Orasugh, C. Pal, A.P. Samanta, D. Chattopadhyay, Carbon nanotube and nanofiber reinforced polymer composites, in Encyclopedia of Materials: Plastics and Polymers. ed. by M.S.J. Hashmi (Elsevier, Oxford, 2022), pp.837–859

    Chapter  Google Scholar 

  38. N. Brushlinsky, S. Sergei, P. Wagner, B. Messerschmidt, World Fire Statistics (2022)

    Google Scholar 

  39. T. Kashiwagi, iPolymer combustion and flammability—Role of the condensed phase, in Symposium (International) on Combustion (Elsevier, 1994), pp. 1423–1437

    Google Scholar 

  40. B. Research, Global Market for Plastics Compounding 2021–2026. https://www.researchandmarkets.com/reports/5515323/global-market-for-plastics-compounding-2021-2026#:~:text=The%20global%20market%20volume%20for,the%20period%20of%202021%2D2026. Accessed 10 Jan 2023

  41. W. He, P. Song, B. Yu, Z. Fang, H. Wang, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 114, 100687 (2020)

    Article  CAS  Google Scholar 

  42. H. Macskásy, G. Palyi, in Plastics: Their Behaviour in Fires (Elsevier, 2012)

    Google Scholar 

  43. A. Boudenne, L. Ibos, Y. Candau, S. Thomas, Handbook of Multiphase Polymer Systems (Wiley & Sons, 2011)

    Google Scholar 

  44. A.I. Al-Mosawi, Flame retardants, their beginning, types, and environmental impact: a review. ÉPÍTŐANYAG: A SZILIKÁTIPARI TUDOMÁNYOS EGYESÜLET LAPJA 74(1), 2–8 (2022)

    Google Scholar 

  45. R.R. Hindersinn, Historical Aspects of Polymer Fire Retardance (ACS Publications, 1990)

    Google Scholar 

  46. S. Bayen, J.P. Obbard, G.O. Thomas, Chlorinated paraffins: a review of analysis and environmental occurrence. Environ. Int. 32(7), 915–929 (2006)

    Article  CAS  PubMed  Google Scholar 

  47. A. Dey, S. Mandal, S. Bhandari, C. Pal, J.T. Orasugh, D. Chattopadhyay, Characterization methods, in Fiber-Reinforced Nanocomposites: Fundamentals and Applications (Elsevier, 2020), pp. 7–67

    Google Scholar 

  48. L.S. Birnbaum, D.F. Staskal, Brominated flame retardants: cause for concern? Environ. Health Perspect. 112(1), 9–17 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M. Alaee, P. Arias, A. Sjödin, Å. Bergman, An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int. 29(6), 683–689 (2003)

    Article  CAS  PubMed  Google Scholar 

  50. E. Hoh, Zhu, R.A. Hites, Dechlorane plus, a chlorinated flame retardant, in the Great Lakes. Environ. Sci. Technol. 40(4), 1184–1189 (2006)

    Google Scholar 

  51. R. Hou, Y. Xu, Z. Wang, Review of OPFRs in animals and humans: absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere 153, 78–90 (2016)

    Article  CAS  PubMed  Google Scholar 

  52. A. Covaci, S. Harrad, M.A.-E. Abdallah, N. Ali, R.J. Law, D. Herzke, C.A. de Wit, Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ. Int. 37(2), 532–556 (2011)

    Article  CAS  PubMed  Google Scholar 

  53. R.J. Law, C.R. Allchin, J. De Boer, A. Covaci, D. Herzke, P. Lepom, S. Morris, J. Tronczynski, C.A. De Wit, Levels and trends of brominated flame retardants in the European environment. Chemosphere 64(2), 187–208 (2006)

    Article  CAS  PubMed  Google Scholar 

  54. F. Tao, M.A.-E. Abdallah, D.C. Ashworth, P. Douglas, M.B. Toledano, S. Harrad, Emerging and legacy flame retardants in UK human milk and food suggest slow response to restrictions on use of PBDEs and HBCDD. Environ. Int. 105, 95–104 (2017)

    Article  CAS  PubMed  Google Scholar 

  55. S. Lee, H.-J. Cho, W. Choi, H.-B. Moon, Organophosphate flame retardants (OPFRs) in water and sediment: occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea. Marine Pollut0 Bull. 130, 105–112 (2018)

    Article  CAS  Google Scholar 

  56. G. Chen, Y. Jin, Y. Wu, L. Liu, Z. Fu, Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption. Environ. Toxicol. Pharmacol. 40(1), 310–318 (2015)

    Article  CAS  PubMed  Google Scholar 

  57. H. Vahabi, F. Laoutid, M. Mehrpouya, M.R. Saeb, P. Dubois, Flame retardant polymer materials: an update and the future for 3D printing developments. Mater. Sci. Eng. R. Rep. 144, 100604 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprakas Sinha Ray .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ray, S.S., Temane, L.T., Orasugh, J.T. (2024). Graphene Nanoplatelets in Brief. In: Graphene-Bearing Polymer Composites. Springer Series in Materials Science, vol 340. Springer, Cham. https://doi.org/10.1007/978-3-031-51924-6_2

Download citation

Publish with us

Policies and ethics