Skip to main content

Funktionalisierung von Heteroarenen unter kontinuierlichem Durchfluss

  • Chapter
  • First Online:
Flow-Chemie für die Synthese von Heterocyclen

Zusammenfassung

Aromatische Heterocyclen sind allgegenwärtige Motive in pharmazeutischen und agrochemischen Strukturen. Die Funktionalisierung dieser Ringsysteme ist ein wichtiger Teil vieler synthetischer Verfahren. In diesem Kapitel wird ein Überblick darüber gegeben, wie die Mikrodurchflusstechnologie als leistungsstarkes Werkzeug für die Diversifizierung von Heteroarenen eingesetzt wurde. Ein Schwerpunkt liegt auf der Feinchemiesynthese, obwohl auch Reaktordesign und Problemlösung diskutiert werden, wenn sie relevant sind, da sie einen wichtigen Teil des Forschungsfeldes ausmachen. Pragmatische Übersetzungen in den Mikrodurchfluss werden für bestehende Funktionalisierungsprotokolle überprüft, und einige schwer fassbare Reaktionen werden hervorgehoben, die im Batch-Modus nicht zufriedenstellend durchgeführt werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 229.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Oger N, Le Grognec E, Felpin F-X (2015) Org Chem Front 2(5):590–614

    Article  CAS  Google Scholar 

  2. Movsisyan M, Delbeke EI, Berton JK, Battilocchio C, Ley SV, Stevens CV (2016) Chem Soc Rev 45(18):4892–4928

    Article  CAS  PubMed  Google Scholar 

  3. Nagaki A, Yoshida J-I (2014) Microreactor technology in lithium chemistry. Lithium compounds in organic synthesis. Wiley-VCH Verlag GmbH, KGaA, Weinheim, S 491–512

    Google Scholar 

  4. Nagaki A, Yoshida J-I (2016) Preparation and use of organolithium and organomagnesium species in flow. In: Noël T (Hrsg) Organometallic flow chemistry. Topics in organometallic chemistry, Bd 57. Springer, Berlin, S 137–175

    Google Scholar 

  5. Degennaro L, Carlucci C, De Angelis S, Luisi R (2016) J Flow Chem 6(3):136–166

    Article  CAS  Google Scholar 

  6. Noel T, Hessel V (2015) Cross-coupling chemistry in continuous flow. New trends in cross-coupling: theory and applications. The Royal Society of Chemistry, London, S 610–644

    Google Scholar 

  7. Noel T, Buchwald SL (2011) Chem Soc Rev 40(10):5010–5029

    Article  CAS  PubMed  Google Scholar 

  8. Cantillo D, Kappe CO (2014) ChemCatChem 6(12):3286–3305

    Article  CAS  Google Scholar 

  9. Baumann M, Baxendale IR, Ley SV (2011) Mol Divers 15(3):613–630

    Article  CAS  PubMed  Google Scholar 

  10. Wegner J, Ceylan S, Kirschning A (2012) Adv Synth Catal 354(1):17–57

    Article  CAS  Google Scholar 

  11. Malet-Sanz L, Susanne F (2012) J Med Chem 55(9):4062–4098

    Article  CAS  PubMed  Google Scholar 

  12. Porta R, Benaglia M, Puglisi A (2016) Org Process Res Dev 20(1):2–25

    Article  CAS  Google Scholar 

  13. Britton J, Raston CL (2017) Chem Soc Rev 46(5):1250–1271

    Article  CAS  PubMed  Google Scholar 

  14. Chinchilla R, Nájera C (2007) Chem Rev 107(3):874–922

    Article  CAS  PubMed  Google Scholar 

  15. Doucet H, Hierso J-C (2007) Angew Chem Int Ed 46(6):834–871

    Article  CAS  Google Scholar 

  16. Chinchilla R, Najera C (2011) Chem Soc Rev 40(10):5084–5121

    Article  CAS  PubMed  Google Scholar 

  17. Karak M, Barbosa LCA, Hargaden GC (2014) RSC Adv 4(96):53442–53466

    Article  CAS  Google Scholar 

  18. Wang D, Gao S (2014) Org Chem Front 1(5):556–566

    Article  CAS  Google Scholar 

  19. Kawanami H, Matsushima K, Sato M, Ikushima Y (2007) Angew Chem Int Ed 46(27):5129–5132

    Article  CAS  Google Scholar 

  20. Lee HJ, Park K, Bae G, Choe J, Song KH, Lee S (2011) Tetrahedron Lett 52(39):5064–5067

    Article  CAS  Google Scholar 

  21. Placzek MS, Chmielecki JM, Houghton C, Calder A, Wiles C, Jones GB (2013) J Flow Chem 3(2):46–50

    Article  CAS  Google Scholar 

  22. Shu W, Buchwald SL (2011) Chem Sci 2(12):2321–2325

    Article  CAS  Google Scholar 

  23. Naber JR, Buchwald SL (2010) Angew Chem 122(49):9659–9664

    Article  Google Scholar 

  24. Negishi E-i, Kotora M, Xu C (1997) J Org Chem 62(25):8957–8960

    Article  CAS  Google Scholar 

  25. Znidar D, Hone CA, Inglesby P, Boyd A, Kappe CO (2017) Org Process Res Dev 21:878–884

    Article  CAS  Google Scholar 

  26. Xue F, Deng H, Xue C, Mohamed DKB, Tang KY, Wu J (2017) Chem Sci 8:3623–3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuhn S, Hartman RL, Sultana M, Nagy KD, Marre S, Jensen KF (2011) Langmuir 27(10):6519–6527

    Article  CAS  PubMed  Google Scholar 

  28. Hawbaker N, Wittgrove E, Christensen B, Sach N, Blackmond DG (2016) Org Process Res Dev 20(2):465–473

    Article  CAS  Google Scholar 

  29. Teci M, Tilley M, McGuire MA, Organ MG (2016) Chem Eur J 22(48):17407–17415

    Article  CAS  PubMed  Google Scholar 

  30. Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 51(21):5062–5085

    Article  CAS  Google Scholar 

  31. Torborg C, Beller M (2009) Adv Synth Catal 351:3027

    Article  CAS  Google Scholar 

  32. Miyaura N, Suzuki A (1995) Chem Rev 95(7):2457–2483

    Article  CAS  Google Scholar 

  33. Düfert MA, Billingsley KL, Buchwald SL (2013) J Am Chem Soc 135(34):12877–12885

    Article  PubMed  Google Scholar 

  34. Len C, Bruniaux S, Delbecq F, Parmar V (2017) Catalysts 7(5):146

    Article  Google Scholar 

  35. Shore G, Morin S, Organ MG (2006) Angew Chem Int Ed 45(17):2761–2766

    Article  CAS  Google Scholar 

  36. Baxendale IR, Griffiths-Jones CM, Ley SV, Tranmer GK (2006) Chem Eur J 12(16):4407–4416

    Article  CAS  PubMed  Google Scholar 

  37. Yamada YMA, Watanabe T, Beppu T, Fukuyama N, Torii K, Uozumi Y (2010) Chem Eur J 16(37):11311–11319

    Article  CAS  PubMed  Google Scholar 

  38. Trinh TN, Hizartzidis L, Lin AJS, Harman DG, McCluskey A, Gordon CP (2014) Org Biomol Chem 12(47):9562–9571

    Article  CAS  PubMed  Google Scholar 

  39. Mateos C, Rincón JA, Martín-Hidalgo B, Villanueva J (2014) Tetrahedron Lett 55(27):3701–3705

    Article  CAS  Google Scholar 

  40. Pascanu V, Hansen PR, Bermejo Gómez A, Ayats C, Platero-Prats AE, Johansson MJ, Pericàs MÀ, Martín-Matute B (2015) ChemSusChem 8(1):123–130

    Article  CAS  PubMed  Google Scholar 

  41. Yang G-R, Bae G, Choe J-H, Lee S-W, Song K-H (2010) Bull Kor Chem Soc 31(1):250–252

    Article  Google Scholar 

  42. de Muñoz JM, Alcázar J, de la Hoz A, Díaz-Ortiz A (2012) Adv Synth Catal 354(18):3456–3460

    Article  Google Scholar 

  43. Egle B, Muñoz J, Alonso N, De Borggraeve W, de la Hoz A, Díaz-Ortiz A, Alcázar J (2015) J Flow Chem 4(1):22–25

    Article  Google Scholar 

  44. Miller PW, Long NJ, de Mello AJ, Vilar R, Audrain H, Bender D, Passchier J, Gee A (2007) Angew Chem Int Ed 46(16):2875–2878

    Article  CAS  Google Scholar 

  45. Hartwig JF (2015) J Am Chem Soc 138(1):2–24

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fabry DC, Ho YA, Zapf R, Tremel W, Panthöfer M, Rueping M, Rehm TH (2017) Green Chem 19(8):1911–1918

    Article  CAS  Google Scholar 

  47. Zhang L, Geng M, Teng P, Zhao D, Lu X, Li J-X (2012) Ultrason Sonochem 19(2):250–256

    Article  CAS  PubMed  Google Scholar 

  48. Frost CG, Mutton L (2010) Green Chem 12(10):1687

    Article  CAS  Google Scholar 

  49. Wilson NS, Sarko CR, Roth GP (2004) Org Process Res Dev 8(3):535–538

    Article  CAS  Google Scholar 

  50. Noël T, Musacchio AJ (2011) Org Lett 13(19):5180–5183

    Article  PubMed  Google Scholar 

  51. Li J-H, Liu W-J, Xie Y-X (2005) J Org Chem 70(14):5409–5412

    Article  CAS  PubMed  Google Scholar 

  52. Noël T, Kuhn S, Musacchio AJ, Jensen KF, Buchwald SL (2011) Angew Chem Int Ed 50(26):5943–5946

    Article  Google Scholar 

  53. Shu W, Pellegatti L, Oberli MA, Buchwald SL (2011) Angew Chem Int Ed 50(45):10665–10669

    Article  CAS  Google Scholar 

  54. Nagaki A, Moriwaki Y, Yoshida J (2012) Chem Commun 48(91):11211–11213

    Article  CAS  Google Scholar 

  55. Christakakou M, Schön M, Schnürch M, Mihovilovic MD (2013) Synlett 24(18):2411–2418

    Article  CAS  Google Scholar 

  56. Dalla-Vechia L, Reichart B, Glasnov T, Miranda LSM, Kappe CO, de Souza ROMA (2013) Org Biomol Chem 11(39):6806–6813

    Article  CAS  PubMed  Google Scholar 

  57. Valente C, Çalimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG (2012) Angew Chem Int Ed 51(14):3314–3332

    Article  CAS  Google Scholar 

  58. Nagaki A, Kenmoku A, Moriwaki Y, Hayashi A, Yoshida J-i (2010) Angew Chem Int Ed 49(41):7543–7547

    Article  CAS  Google Scholar 

  59. Linghu X, Wong N, Jost V, Fantasia S, Sowell CG, Gosselin F (2017) Org Process Res Dev

    Google Scholar 

  60. Schlosser M (2005) Angew Chem Int Ed 44(3):376–393

    Article  CAS  Google Scholar 

  61. Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015) J Med Chem 58(21):8315–8359

    Article  CAS  PubMed  Google Scholar 

  62. Becker MR, Ganiek MA, Knochel P (2015) Chem Sci 6(11):6649–6653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Becker MR, Knochel P (2016) Org Lett 18(6):1462–1465

    Article  CAS  PubMed  Google Scholar 

  64. Roesner S, Buchwald SL (2016) Angew Chem Int Ed 55(35):10463–10467

    Article  CAS  Google Scholar 

  65. Lange PP, Gooßen LJ, Podmore P, Underwood T, Sciammetta N (2011) Chem Commun 47(12):3628

    Article  CAS  Google Scholar 

  66. Bogdan AR, Charaschanya M, Dombrowski AW, Wang Y, Djuric SW (2016) Org Lett 18(8):1732–1735

    Article  CAS  PubMed  Google Scholar 

  67. Santos CIM, Barata JFB, Faustino MAF, Lodeiro C, Neves MGPMS (2013) RSC Adv 3(42):19219

    Article  CAS  Google Scholar 

  68. Bourne SL, O’Brien M, Kasinathan S, Koos P, Tolstoy P, Hu DX, Bates RW, Martin B, Schenkel B, Ley SV (2013) ChemCatChem 5(1):159–172

    Article  CAS  Google Scholar 

  69. Gemoets HPL, Hessel V, Noël T (2014) Org Lett 16(21):5800–5803

    Article  CAS  PubMed  Google Scholar 

  70. Pieber B, Glasnov T, Kappe CO (2014) RSC Adv 4(26):13430–13433

    Article  CAS  Google Scholar 

  71. Puglisi A, Benaglia M, Chiroli V (2013) Green Chem 15(7):1790

    Article  CAS  Google Scholar 

  72. Nagaki A, Yamada S, Doi M, Tomida Y, Takabayashi N, Yoshida J-I (2011) Green Chem 13(5):1110–1113

    Article  CAS  Google Scholar 

  73. Kim H, Nagaki A, Yoshida J (2011) Nat Commun:2

    Google Scholar 

  74. Tricotet T, O’Shea DF (2010) Chem Eur J 16(22):6678–6686

    Article  CAS  PubMed  Google Scholar 

  75. Sipőcz T, Lengyel L, Sipos G, Kocsis L, Dormán G, Jones RV, Darvas F (2016) J Flow Chem 6(2):117–122

    Article  Google Scholar 

  76. Putra AE, Takigawa K, Tanaka H, Ito Y, Oe Y, Ohta T (2013) Eur J Org Chem 2013(28):6344–6354

    Article  CAS  Google Scholar 

  77. Ishitani H, Saito Y, Tsubogo T, Kobayashi S (2016) Org Lett 18(6):1346–1349

    Article  CAS  PubMed  Google Scholar 

  78. Osorio-Planes L, Rodríguez-Escrich C, Pericàs MA (2014) Chem Eur J 20(8):2367–2372

    Article  CAS  PubMed  Google Scholar 

  79. Mohapatra SS, Wilson ZE, Roy S, Ley SV (2017) Tetrahedron 73(14):1812–1819

    Article  CAS  Google Scholar 

  80. Haas D, Hammann JM, Greiner R, Knochel P (2016) ACS Catal 6(3):1540–1552

    Article  CAS  Google Scholar 

  81. Phapale VB, Cárdenas DJ (2009) Chem Soc Rev 38(6):1598

    Article  CAS  PubMed  Google Scholar 

  82. Alonso N, Miller LZ, de Muñoz JM, Alcázar J, McQuade DT (2014) Adv Synth Catal 356(18):3737–3741

    Article  CAS  Google Scholar 

  83. Price GA, Bogdan AR, Aguirre AL, Iwai T, Djuric SW, Organ MG (2016) Cat Sci Technol 6(13):4733–4742

    Article  CAS  Google Scholar 

  84. Zhang H, Buchwald SL (2017) J Am Chem Soc 139(33):11590–11594

    Article  CAS  PubMed  Google Scholar 

  85. Wu XF, Neumann H, Beller M (2012) Chem Asian J 7(8):1744–1754

    Article  CAS  PubMed  Google Scholar 

  86. Chen M, Buchwald SL (2013) Angew Chem Int Ed 52(44):11628–11631

    Article  CAS  Google Scholar 

  87. Kiyohide M, Etsuko T, Midori A, Kiyosi K (1981) Chem Lett 10(12):1719–1720

    Article  Google Scholar 

  88. Liu H, Gu Z, Jiang X (2013) Adv Synth Catal 355(4):617–626

    Article  CAS  Google Scholar 

  89. Monteiro JL, Carneiro PF, Elsner P, Roberge DM, Wuts PGM, Kurjan KC, Gutmann B, Kappe CO (2017) Chem Eur J 23(1):176–186

    Article  CAS  PubMed  Google Scholar 

  90. Baciocchi E, Muraglia E (1993) Tetrahedron Lett 34(23):3799–3800

    Article  CAS  Google Scholar 

  91. Tran DN, Battilocchio C, Lou S-B, Hawkins JM, Ley SV (2015) Chem Sci 6(2):1120–1125

    Article  CAS  PubMed  Google Scholar 

  92. Battilocchio C, Feist F, Hafner A, Simon M, Tran DN, Allwood DM, Blakemore DC, Ley SV (2016) Nat Chem 8(4):360–367

    Article  CAS  PubMed  Google Scholar 

  93. Booth G (2000) Nitro compounds, aromatic. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH, KGaA, Weinheim

    Google Scholar 

  94. Henke L, Winterbauer H (2005) Chem Eng Technol 28(7):749–752

    Article  CAS  Google Scholar 

  95. Burns JR, Ramshaw C (2002) Chem Eng Commun 189(12):1611–1628

    Article  CAS  Google Scholar 

  96. Dummann G, Quittmann U, Gröschel L, Agar DW, Wörz O, Morgenschweis K (2003) Catal Today 79:433–439

    Article  Google Scholar 

  97. Yang Jiu-Long LIJ-FLUY (2009) Acta Phys -Chim Sin 25(10):2045–2049

    Article  Google Scholar 

  98. Ferstl W, Klahn T, Schweikert W, Billeb G, Schwarzer M, Loebbecke S (2007) Chem Eng Technol 30(3):370–378

    Article  CAS  Google Scholar 

  99. Antes J, Boskovic D, Krause H, Loebbecke S, Lutz N, Tuercke T, Schweikert W (2003) Chem Eng Res Des 81(7):760–765

    Article  CAS  Google Scholar 

  100. Halder R, Lawal A, Damavarapu R (2007) Catal Today 125(1):74–80

    Article  CAS  Google Scholar 

  101. Dagade SP, Waghmode SB, Kadam VS, Dongare MK (2002) Appl Catal A 226(1):49–61

    Article  CAS  Google Scholar 

  102. Kulkarni AA, Nivangune NT, Kalyani VS, Joshi RA, Joshi RR (2008) Org Process Res Dev 12(5):995–1000

    Article  CAS  Google Scholar 

  103. Ducry L, Roberge DM (2005) Angew Chem Int Ed 44(48):7972–7975

    Article  CAS  Google Scholar 

  104. Kulkarni AA, Kalyani VS, Joshi RA, Joshi RR (2009) Org Process Res Dev 13(5):999–1002

    Article  CAS  Google Scholar 

  105. Knapkiewicz P, Skowerski K, Jaskólska DE, Barbasiewicz M, Olszewski TK (2012) Org Process Res Dev 16(8):1430–1435

    Article  CAS  Google Scholar 

  106. Brocklehurst CE, Lehmann H, La Vecchia L (2011) Org Process Res Dev 15(6):1447–1453

    Article  CAS  Google Scholar 

  107. Veretennikov EA, Lebedev BA, Tselinskii IV (2001) Russ J Appl Chem 74(11):1872–1876

    Article  CAS  Google Scholar 

  108. Yu Z, Lv Y, Yu C, Su W (2013) Org Process Res Dev 17(3):438–442

    Article  CAS  Google Scholar 

  109. Chen Y, Zhao Y, Han M, Ye C, Dang M, Chen G (2013) Green Chem 15(1):91–94

    Article  CAS  Google Scholar 

  110. Kulkarni AA, Beilstein J (2014) Org Chem 10:405–424

    Google Scholar 

  111. Gutmann B, Cantillo D, Kappe CO (2015) Angew Chem Int Ed 54(23):6688–6728

    Article  CAS  Google Scholar 

  112. De Jong RL, Davidson JG, Dozeman GJ, Fiore PJ, Giri P, Kelly ME, Puls TP, Seamans RE (2001) Org Process Res Dev 5(3):216–225

    Article  Google Scholar 

  113. Panke G, Schwalbe T, Stirner W, Taghavi-Moghadam S, Wille G (2003) Synthesis 2003(18):2827–2830

    Google Scholar 

  114. Junkers M (2009) ChemFiles 9(4):7–9

    Google Scholar 

  115. Pelleter J, Renaud F (2009) Org Process Res Dev 13(4):698–705

    Article  CAS  Google Scholar 

  116. Gage JR, Guo X, Tao J, Zheng C (2012) Org Process Res Dev 16(5):930–933

    Article  CAS  Google Scholar 

  117. Wu R, Smidansky ED, Oh HS, Takhampunya R, Padmanabhan R, Cameron CE, Peterson BR (2010) J Med Chem 53(22):7958–7966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zuckerman NB, Shusteff M, Pagoria PF, Gash AE (2015) J Flow Chem 5(3):178–182

    Article  Google Scholar 

  119. Brown DG, Boström J (2016) J Med Chem 59(10):4443–4458

    Article  CAS  PubMed  Google Scholar 

  120. Shieh W-C, Lozanov M, Repič O (2003) Tetrahedron Lett 44(36):6943–6945

    Article  CAS  Google Scholar 

  121. Herath A, Dahl R, Cosford NDP (2010) Org Lett 12(3):412–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Herath A, Cosford NDP, Beilstein J (2017) Org Chem 13:239–246

    CAS  Google Scholar 

  123. Venturoni F, Nikbin N, Ley SV, Baxendale IR (2010) Org Biomol Chem 8(8):1798–1806

    Article  CAS  PubMed  Google Scholar 

  124. Guetzoyan L, Nikbin N, Baxendale IR, Ley SV (2013) Chem Sci 4(2):764–769

    Article  CAS  Google Scholar 

  125. Butler AJE, Thompson MJ, Maydom PJ, Newby JA, Guo K, Adams H, Chen B (2014) J Org Chem 79(21):10196–10202

    Article  CAS  PubMed  Google Scholar 

  126. Rassokhina IV, Tikhonova TA, Kobylskoy SG, Babkin IY, Shirinian VZ, Gevorgyan V, Zavarzin IV, Volkova YA (2017) J Org Chem 82:9682–9692

    Article  CAS  PubMed  Google Scholar 

  127. Chen M, Buchwald SL (2013) Angew Chem Int Ed 52(15):4247–4250

    Article  CAS  Google Scholar 

  128. Hamper BC, Tesfu E (2007) Synlett 2007(14):2257–2261

    Article  Google Scholar 

  129. Razzaq T, Glasnov TN, Kappe CO (2009) Eur J Org Chem 2009(9):1321–1325

    Article  Google Scholar 

  130. Petersen TP, Larsen AF, Ritzén A, Ulven T (2013) J Org Chem 78(8):4190–4195

    Article  CAS  PubMed  Google Scholar 

  131. Hartwig J, Ceylan S, Kupracz L, Coutable L, Kirschning A (2013) Angew Chem Int Ed 52(37):9813–9817

    Article  CAS  Google Scholar 

  132. Lee CLK, Sem ZY, Hendra H, Liu XQ, Kwan WL (2013) J Flow Chem 3(4):114–117

    Article  Google Scholar 

  133. Ingham RJ, Riva E, Nikbin N, Baxendale IR, Ley SV (2012) Org Lett 14(15):3920–3923

    Article  CAS  PubMed  Google Scholar 

  134. Lin H, Dai C, Jamison TF, Jensen KF (2017) Angew Chem Int Ed 56(30):8870–8873

    Article  CAS  Google Scholar 

  135. Cole KP, Groh JM, Johnson MD, Burcham CL, Campbell BM, Diseroad WD, Heller MR, Howell JR, Kallman NJ, Koenig TM, May SA, Miller RD, Mitchell D, Myers DP, Myers SS, Phillips JL, Polster CS, White TD, Cashman J, Hurley D, Moylan R, Sheehan P, Spencer RD, Desmond K, Desmond P, Gowran O (2017) Science 356(6343):1144–1150

    Article  CAS  PubMed  Google Scholar 

  136. Chen Y, Liu B, Liu X, Yang Y, Ling Y, Jia Y (2014) Org Process Res Dev 18(11):1589–1592

    Article  CAS  Google Scholar 

  137. Sahoo HR, Kralj JG, Jensen KF (2007) Angew Chem Int Ed 46(30):5704–5708

    Article  CAS  Google Scholar 

  138. Baumann M, Baxendale IR, Ley SV, Nikbin N, Smith CD, Tierney JP (2008) Org Biomol Chem 6(9):1577–1586

    Article  CAS  PubMed  Google Scholar 

  139. Baumann M, Baxendale IR, Ley SV, Nikbin N, Smith CD (2008) Org Biomol Chem 6(9):1587–1593

    Article  CAS  PubMed  Google Scholar 

  140. O’Brien AG, Levesque F, Seeberger PH (2011) Chem Commun 47(9):2688–2690

    Article  Google Scholar 

  141. Tundel RE, Anderson KW, Buchwald SL (2006) J Org Chem 71(1):430–433

    Article  CAS  PubMed  Google Scholar 

  142. Sunesson Y, Limé E, Nilsson Lill SO, Meadows RE, Norrby P-O (2014) J Org Chem 79(24):11961–11969

    Article  CAS  PubMed  Google Scholar 

  143. Pommella A, Tomaiuolo G, Chartoire A, Caserta S, Toscano G, Nolan SP, Guido S (2013) Chem Eng J 223:578–583

    Article  CAS  Google Scholar 

  144. Hopkin MD, Baxendale IR, Ley SV (2010) Chem Commun 46(14):2450–2452

    Article  CAS  Google Scholar 

  145. Yang JC, Niu D, Karsten BP, Lima F, Buchwald SL (2016) Angew Chem Int Ed 55(7):2531–2535

    Article  CAS  Google Scholar 

  146. Hartman RL, Naber JR, Zaborenko N, Buchwald SL, Jensen KF (2010) Org Process Res Dev 14(6):1347–1357

    Article  CAS  Google Scholar 

  147. Horie T, Sumino M, Tanaka T, Matsushita Y, Ichimura T, Yoshida J-i (2010) Org Process Res Dev 14(2):405–410

    Article  CAS  Google Scholar 

  148. Sedelmeier J, Ley SV, Baxendale IR, Baumann M (2010) Org Lett 12(16):3618–3621

    Article  CAS  PubMed  Google Scholar 

  149. Noel T, Naber JR, Hartman RL, McMullen JP, Jensen KF, Buchwald SL (2011) Chem Sci 2(2):287–290

    Article  CAS  Google Scholar 

  150. Kuhn S, Noel T, Gu L, Heider PL, Jensen KF (2011) Lab Chip 11(15):2488–2492

    Article  CAS  PubMed  Google Scholar 

  151. DeAngelis A, Wang D-H, Buchwald SL (2013) Angew Chem Int Ed 52(12):3434–3437

    Article  CAS  Google Scholar 

  152. Monnier F, Taillefer M (2009) Angew Chem Int Ed 48(38):6954–6971

    Article  CAS  Google Scholar 

  153. Zhang Y, Jamison TF, Patel S, Mainolfi N (2011) Org Lett 13(2):280–283

    Article  CAS  PubMed  Google Scholar 

  154. Chen M, Ichikawa S, Buchwald SL (2015) Angew Chem Int Ed 54(1):263–266

    Article  CAS  Google Scholar 

  155. Vantourout JC, Miras HN, Isidro-Llobet A, Sproules S, Watson AJB (2017) J Am Chem Soc 139(13):4769–4779

    Article  CAS  PubMed  Google Scholar 

  156. Singh BK, Stevens CV, Acke DRJ, Parmar VS, Van der Eycken EV (2009) Tetrahedron Lett 50(1):15–18

    Article  CAS  Google Scholar 

  157. Bao J, Tranmer GK (2016) Tetrahedron Lett 57(6):654–657

    Article  CAS  Google Scholar 

  158. Mallia CJ, Burton PM, Smith AMR, Walter GC, Baxendale IR (2016) Beilstein J Org Chem 12:1598–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Britton J, Jamison TF (2017) Angew Chem Int Ed 56:8823–8827

    Article  CAS  Google Scholar 

  160. Lee JK, Fuchter MJ, Williamson RM, Leeke GA, Bush EJ, McConvey IF, Saubern S, Ryan JH, Holmes AB (2008) Chem Commun 39:4780–4782

    Article  Google Scholar 

  161. Benaskar F, Engels V, Patil N, Rebrov EV, Meuldijk J, Hessel V, Hulshof LA, Jefferson DA, Schouten JC, Wheatley AEH (2010) Tetrahedron Lett 51(2):248–251

    Article  CAS  Google Scholar 

  162. Benaskar F, Patil NG, Engels V, Rebrov EV, Meuldijk J, Hulshof LA, Hessel V, Wheatley AEH, Schouten JC (2012) Chem Eng J 207:426–439

    Article  Google Scholar 

  163. He Z, Jamison TF (2014) Angew Chem 126(13):3421–3425

    Article  Google Scholar 

  164. Tagata T, Nishida M, Nishida A (2009) Tetrahedron Lett 50(45):6176–6179

    Article  CAS  Google Scholar 

  165. Tagata T, Nishida M, Nishida A (2010) Adv Synth Catal 352(10):1662–1666

    Article  CAS  Google Scholar 

  166. Browne DL, Baumann M, Harji BH, Baxendale IR, Ley SV (2011) Org Lett 13(13):3312–3315

    Article  CAS  PubMed  Google Scholar 

  167. Newby JA, Huck L, Blaylock DW, Witt PM, Ley SV, Browne DL (2014) Chem Eur J 20(1):263–271

    Article  CAS  PubMed  Google Scholar 

  168. Nagaki A, Hirose K, Moriwaki Y, Mitamura K, Matsukawa K, Ishizuka N, Yoshida J (2016) Cat Sci Technol 6(13):4690–4694

    Article  CAS  Google Scholar 

  169. Usutani H, Nihei T, Papageorgiou CD, Cork DG (2017) Org Process Res Dev 21:669–673

    Article  CAS  Google Scholar 

  170. Chen K, Zhang S, He P, Li P (2016) Chem Sci 7(6):3676–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chen K, Cheung MS, Lin Z, Li P (2016) Org Chem Front 3(7):875–879

    Article  CAS  Google Scholar 

  172. Campbell MG, Ritter T (2015) Chem Rev 115(2):612–633

    Article  CAS  PubMed  Google Scholar 

  173. Nagaki A, Uesugi Y, Kim H, Yoshida J-i (2013) Chem Asian J 8(4):705–708

    Article  CAS  PubMed  Google Scholar 

  174. Yamada S, Gavryushin A, Knochel P (2010) Angew Chem 122(12):2261–2264

    Article  Google Scholar 

  175. Noël T, Maimone TJ, Buchwald SL (2011) Angew Chem Int Ed 50(38):8900–8903

    Article  Google Scholar 

  176. Watson DA, Su M, Teverovskiy G, Zhang Y, García-Fortanet J, Kinzel T, Buchwald SL (2009) Science 325(5948):1661–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Park NH, Senter TJ, Buchwald SL (2016) Angew Chem 128(39):12086–12090

    Article  Google Scholar 

  178. Yu ZQ, Lv YW, Yu CM, Su WK (2013) Tetrahedron Lett 54(10):1261–1263

    Article  CAS  Google Scholar 

  179. Yu Z, Lv Y, Yu C (2012) Org Process Res Dev 16(10):1669–1672

    Article  CAS  Google Scholar 

  180. Lob P, Hessel V, Klefenz H, Lowe H, Mazanek K (2005) Lett Org Chem 2(8):767–779

    Article  Google Scholar 

  181. Midorikawa K, Suga S, Yoshida J-i (2006) Chem Commun 36:3794–3796

    Article  Google Scholar 

  182. D’Attoma J, Cozien G, Brun PL, Robin Y, Bostyn S, Buron F, Routier S (2016) ChemistrySelect 1(3):338–342

    Article  Google Scholar 

  183. Petersen TP, Becker MR, Knochel P (2014) Angew Chem Int Ed 53(30):7933–7937

    Article  CAS  Google Scholar 

  184. Malet-Sanz L, Madrzak J, Holvey RS, Underwood T (2009) Tetrahedron Lett 50(52):7263–7267

    Article  CAS  Google Scholar 

  185. Klapars A, Buchwald SL (2002) J Am Chem Soc 124(50):14844–14845

    Article  CAS  PubMed  Google Scholar 

  186. Beaulieu F, Snieckus V (1992) Synthesis 1992(1/2):112–118

    Article  Google Scholar 

  187. Lin S, Moon B, Porter KT, Rossman CA, Zennie T, Wemple J (2000) Org Prep Poced Int 32(6):547–555

    Article  CAS  Google Scholar 

  188. Stadler O (1884) Ber Dtsch Chem Ges 17(2):2075–2081

    Article  CAS  Google Scholar 

  189. Wang X, Cuny GD, Noël T (2013) Angew Chem 125(30):8014–8018

    Article  Google Scholar 

  190. Glasnov T (2018) Photochemical synthesis of heterocycles: merging flow processing and metal-catalyzed visible light photoredox transformations. Top Heterocyclic Chem. https://doi.org/10.1007/7081_2018_20

  191. Malet-Sanz L, Madrzak J, Ley SV, Baxendale IR (2010) Org Biomol Chem 8(23):5324–5332

    Article  CAS  PubMed  Google Scholar 

  192. Becker MR, Knochel P (2015) Angew Chem Int Ed 54(42):12501–12505

    Article  CAS  Google Scholar 

  193. Nagaki A, Yamada D, Yamada S, Doi M, Ichinari D, Tomida Y, Takabayashi N, Yoshida J-I (2013) Aust J Chem 66(2):199–207

    Article  CAS  Google Scholar 

  194. Michel B, Greaney MF (2014) Org Lett 16(10):2684–2687

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim M. De Borggraeve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demaerel, J., Bieliūnas, V., De Borggraeve, W.M. (2024). Funktionalisierung von Heteroarenen unter kontinuierlichem Durchfluss. In: Sharma, U.K., Van der Eycken, E.V. (eds) Flow-Chemie für die Synthese von Heterocyclen. Springer Spektrum, Cham. https://doi.org/10.1007/978-3-031-51912-3_6

Download citation

Publish with us

Policies and ethics