Skip to main content

Palynological Perspective on Understanding Climate Change in India Over the Pre-industrial Common Era (CE; Past Ca. 2000 Years): a Comprehensive Review and a Critical Evaluation

  • Chapter
  • First Online:
Applications of Palynology in Stratigraphy and Climate Studies

Part of the book series: Society of Earth Scientists Series ((SESS))

  • 33 Accesses

Abstract

Palynology (and pollen analysis) has proven to be a reliable tool in reconstructing the past vegetation (dynamics) and contemporary climatic changes. The chapter reviews the role of pollen in reconstructing the palaeoclimate in India over the pre-industrial Common Era (CE; past ca. 2000 years [2 ka]; past 2 millennia; Late Holocene), comprising the global climatic events, such as the Roman Warm Period (RWP), Dark Ages Cold Period (DACP), Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and the Current Warm Period (CWP). In addition, the hydro-climatic variability, which influences the socio-economic welfare of one-third of the human population through the agricultural output and Gross Domestic Product (GDP) of this densely-populated country, are also analyzed. This chapter also discusses the solar forcing and the other forcing factors behind the hydroclimatic variability during the past 2 millennia in India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achyuthan H, Farooqui A, Eastoe C et al (2013) A five-century long limnological and environmental record from northeastern India. In: Kotlia BS (ed) Holocene, Nova Science Publisher Inc., pp 129–143. ISBN: 978-1–62257–722–4

    Google Scholar 

  • Anderson DM, Overpeck JT, Gupta AK (2002) Increase in the Asian southwest monsoon during the past four centuries. Science 297:596–599

    Article  CAS  Google Scholar 

  • Bali R, Ali SN, Bera SK et al (2015) Impact of anthropocene vis-à-vis Holocene climatic changes on central Indian Himalayan Glaciers. In: Lollino G et al (ed) Engineering geology for society and territory, vol 1. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-09300-0-89

  • Bali R, Chauhan MS, Mishra AK et al (2017) Vegetation and climate change in the temperate-subalpine belt of Himachal Pradesh since 6300 cal. yrs. BP, inferred from pollen evidence of Triloknath palaeolake. Quat Int 444:11–23. https://doi.org/10.1016/j.quaint.2016.07.057

  • Banerji US, Arulbalaji P, Padmalal D (2020) Holocene climate variability and Indian Summer Monsoon: an overview. The Holocene 30(5):744–773

    Article  Google Scholar 

  • Banerji US, Bhushan R, Joshi KB et al (2021) Hydroclimatic variability during the last two millennia from the mudflats of Diu Island, Western India. Geol J 56:3586–3604. https://doi.org/10.1002/gj.4116

    Article  Google Scholar 

  • Berkelhammer M, Sinha A, Stott L et al (2012) An abrupt shift in the Indian monsoon 4000 years ago. Am Geophys Union Geophys Monogr Ser 198:75–87

    Google Scholar 

  • Bhattacharyya A, Sharma J, Shah SK, Chaudhary V (2007) Climatic changes during the last 1800 yrs BP from Paradise Lake, Sela Pass, Arunachal Pradesh, Northeast Himalaya. Curr Sci 93(7):983–987

    Google Scholar 

  • Birks HJB, Birks HH (1980) Quaternary palaeoecology. University Park Press, p. 289

    Google Scholar 

  • Bischoff T, Schneider T (2014) Energetic constraints on the position of the intertropical convergence zone. J Clim 27(13):4937–4951

    Article  Google Scholar 

  • Bond G, Kromer B, Beer J et al (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294(5549):2130–2136

    Article  CAS  Google Scholar 

  • Bonnefille R, Anupama K, Barboni D et al (1999) Modern pollen spectra from tropical South India and Sri Lanka: Altitudinal distribution. J Biogeogr 26:1255–1280

    Article  Google Scholar 

  • Bradely RS (1985) Quaternary palaeoclimatology: methods of palaeoclimatic reconstruction. Boston Allen and Unwin, London

    Google Scholar 

  • Bradley RS, Jones PD (1993) “Little Ice Age” summer temperature variations: their nature and relevance to recent global warming trends. The Holocene 3:367–376

    Article  Google Scholar 

  • Bradley RS, Hughes MK, Diaz HF (2003) Climate in medieval time. Science 302:404–405. https://doi.org/10.1126/science.1090372

  • Büntgen U, Tegel W, Nicolussi K et al (2011) 2500 years of European climate variability and human susceptibility. Science 331(6017):578–582

    Article  Google Scholar 

  • Cai Y, Tan L, Cheng H et al (2010) The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett 291:21–31

    Article  CAS  Google Scholar 

  • Chauhan MS (2004) Late-Holocene vegetation and climatic changes in Eastern Madhya Pradesh. Gondwana Geol Mag 19(2):165–175

    Google Scholar 

  • Chauhan MS (2005) Pollen record of vegetation and climatic changes in northeastern Madhya Pradesh during last 1600 years. Trop Ecol 46(2):265

    Google Scholar 

  • Chauhan MS (2006) Late Holocene vegetation and climate change in the alpine belt of Himachal Pradesh, India. Curr Sci 91:1572–1578

    Google Scholar 

  • Chauhan MS, Quamar MF(2010) Vegetation and climate change in southeastern Madhya Pradesh during Late Holocene, based on pollen evidence. J Geol Soc India 76(2):143–150. https://doi.org/10.1007/s12594-010-0084-y

  • Chen F, Huang X, Zhang J, Holmes JA, Chen J (2006) Humid little ice age in arid central Asia documented by Bosten Lake, Xinjiang, China. Sci China Ser D Earth Sci 49:1280–1290

    Article  Google Scholar 

  • Cook ER, Krusic PJ, Jones PD (2003) Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. Int J Climatol 23:707–732

    Google Scholar 

  • Cook ER, Anchukaitis KJ, Buckley BM et al (2010) Asian monsoon failure and mega drought during the last millennium. Science 328:486–489

    Article  CAS  Google Scholar 

  • Das M, Singh RK, Gupta AK et al (2017) Holocene strengthening of the Oxygen Minimum Zone in the northwestern Arabian Sea linked to changes in intermediate water circulation or Indian monsoon intensity? Palaeogeogr Palaeoclimatol palaeoecol 483:125–135

    Google Scholar 

  • Dixit Y, Tandon SK (2016) Hydroclimatic variability on the Indian subcontinent in the past millennium: Review and assessment. Earth Sci Rev 161:1–15

    Article  Google Scholar 

  • Dixit Y, Hodell DA, Petrie CA (2014a) Abrupt weakening of the summer monsoon in Northwest India ~4100 yr ago. Geology 42(4):339–342

    Article  CAS  Google Scholar 

  • Dixit Y, Hodell DA, Sinha R et al (2014b) Abrupt weakening of the Indian summer monsoon at 8.2 kyr BP. Earth Planet Sci Lett 391:16–23

    Google Scholar 

  • Dixit Y, Hodell DA, Giesche A et al (2018) Intensified summer monsoon and the urbanization of Indus Civilization in Northwest India. Sci Rep 8(1):4225

    Article  Google Scholar 

  • du Plessis N, Chase BM, Quick LJ et al (2021) Vegetation and climate change during the Medieval Climate Anomaly and the Little Ice Age on the southern Cape coast of South Africa: Pollen evidence from Bo Langvlei. The Holocene 30(12):1716–1727

    Article  Google Scholar 

  • Dutt S, Gupta AK, Clemens SC et al (2015) Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years BP. Geophys Res Lett 42(13):5526–5532

    Article  Google Scholar 

  • Dutt S, Gupta AK, Wünnemann B et al (2018) A long arid interlude in the Indian summer monsoon during ~4,350 to 3,450 cal. yr BP contemporaneous to displacement of the Indus valley civilization. Quat Int 482:83–92

    Article  Google Scholar 

  • Dutt S, Gupta AK, Cheng H et al (2020) Indian summer monsoon variability in or the eastern India during the last two millennia. Quatern Int. https://doi.org/10.1016/j.quaint.2020.10.021

    Article  Google Scholar 

  • Eddy JA (1976) The maunder minimum. Science 192:1189–1202

    Article  CAS  Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy of angiosperms. Waltham (MA)

    Google Scholar 

  • Faegri K, Iverson J (1989) Textbook of pollen analysis. John Wiley & Sons, Chichester

    Google Scholar 

  • Faucon MP, Houben D, Lambers H (2017) Plant functional traits: soil and ecosystem services. Trends Plant Sci 22:385

    Article  CAS  Google Scholar 

  • Fleitmann D, Burns SJ, Mudelsee M et al (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300:1737–1739

    Article  CAS  Google Scholar 

  • Fleury S, Martinez P, Crosta X et al (2015) Pervasive multidecadal variations in productivity within the Peruvian Upwelling System over the last millennium. Quat Sci Rev 125:78–90

    Article  Google Scholar 

  • Foley JA, Costa MH, Delire C et al (2003) Green surprise? How terrestrial ecosystems could affect earth’s climate. Front Ecol Environ 1:38–44

    Google Scholar 

  • Gadgil S (2003) The Indian monsoon and its variability. Am Rev Earth Planet Sci 31:429–467

    Article  CAS  Google Scholar 

  • Gadgil S, Gadgil S (2006) The Indian monsoon, GDP and agriculture. Econ Polit Weekly 41(47):4887–4895

    Google Scholar 

  • Giosan L, Clift PD, Macklin MG et al (2012) Fluvial landscapes of the Harappan civilization. Proc Natl Acad Sci USA 109:E1688–E1694

    Google Scholar 

  • Ghosh R, Biswas O, Paruya DK et al (2018) Hydroclimatic variability and corresponding vegetation response in the Darjeeling Himalaya, India over the past ~2400 years. CATENA 170:84–99

    Article  CAS  Google Scholar 

  • GrayLJ, Beer J, Geller M et al (2010) Solar influences on climate. Rev Geophys 48(4)

    Google Scholar 

  • Grove JM (1988) The little ice age. Methuen, London

    Google Scholar 

  • Gunnell Y (1997) Relief and climate in South Asia: the influence of the Western Ghats on the current climate pattern of Peninsular India. Int J Climatol 17:1169–1182

    Article  Google Scholar 

  • Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the asian southwest monsoon during the Holocene and their links to the north Atlantic Ocean. Nature 421:354–357

    Article  CAS  Google Scholar 

  • Gupta AK, Das M, Anderson DM (2005) Solar influence on the Indian summer monsoon during the Holocene. Geophys Res 32(17)

    Google Scholar 

  • Gupta AK, Anderson DM, Pandey DN et al (2006) Adaptation and human migration, and evidence of agriculture coincident with changes in the Indian summer monsoon during the Holocene. Curr Sci 90(8):1082–1090

    Google Scholar 

  • Gupta AK, Dutt S, Cheng H et al (2019) Abrupt changes in Indian summer monsoon strength during the last~ 900 years and their linkages to socio-economic conditions in the Indian subcontinent. Palaeogeogr Palaeoclimatol Palaeoecology 536:109347

    Google Scholar 

  • Gupta AK, Prakasam M, Dutt S et al (2020) Evolution and Development of the Indian Monsoon. In: Gupta N, Tandon SK (eds) Geodynamics of the Indian Plate. Springer Geology. https://doi.org/10.1007/978-3-030-15989-4

  • Helama S, Jones PD, Briffa KR (2017) Dark Ages Cold Period: a literature review and directions for future research. The Holocene 27(10):1600–1606

    Article  Google Scholar 

  • Hass HC (1996) Northern Europe climate variations during the Late Holocene: evidence from marine Skagerrak. Palaeogeogr Palaeoclimatol Palaeoecol 123(1–4):121–145

    Article  Google Scholar 

  • Haug GH, Hughen KA, Sigman DM et al (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293(5533):1304–1308

    Article  CAS  Google Scholar 

  • Huang Y, Ziao J, Wen R et al (2023) High- and low- latitude forcing on hydroclimate variability in southern China over the last two millennia. Palaeogeogr Palaeoclimatol Palaeoecol 610:111352

    Article  Google Scholar 

  • Ji J, Shen J, Balsam W et al (2005) Asian monsoon oscillations in the northeastern Qinghai-Tibetan Plateau since the last glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth Planet Sci Lett 233(1–2):61–70

    Article  CAS  Google Scholar 

  • Kar R, Quamar MF (2020a) Pollen-based Quaternary palaeoclimatic studies in India: an overview of recent advances. Palynology 43(1):76–93

    Article  Google Scholar 

  • Kar R, Quamar MF (2020b) Late Pleistocene-Holocene vegetation and climate change from the Western and EasternHimalaya (India): palynological perspective. Curr Sci 119(2):195–218

    Article  Google Scholar 

  • Kar R, Ranhotra PS, Bhattacharayya A et al (2002) Vegetation vis-à-vis climate and glacial fluctuations of the Gangotri glacier since last 2000 years. Curr Sci 82:347–351

    Google Scholar 

  • Kathayat G, Cheng H, Sinha A et al (2017) The Indian monsoon variability and civilization changes in the Indian subcontinent. Sci Adv 3(12):1701296

    Article  Google Scholar 

  • Kotlia BS, Joshi LM (2013) Late Holocene climatic changes in Garhwal Himalaya. Curr Sci:911–919

    Google Scholar 

  • Kotlia BS, Singh AK, Joshi LM et al (2015) Precipitation variability in the Indian central Himalaya during last ca. 4,000 years inferred from a speleothem record: impact of Indian summer monsoon (ISM) and westerlies. Quat Int 371:244–253

    Article  Google Scholar 

  • Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37

    Article  Google Scholar 

  • Lamb HH (1977) Climate: present, past and future. Methuen, London

    Google Scholar 

  • Lamb HH (1982) Climate, history and the modern world. Routledge, Boca Raton (FL)

    Google Scholar 

  • Lamb HH (1995) Climate history and the modern world, 2nd edn. Routledge, New York

    Google Scholar 

  • Laskar AH, Yadava MG, Ramesh R et al (2013) A 4 kyr stalagmite oxygen isotopic record of the past Indian Summer Monsoon in the Andaman Islands. Geochem Geophys 14(9):3555–3566

    Article  CAS  Google Scholar 

  • Li C, Qi J, Yang L et al (2014a) Regional vegetation dynamics and its response to climate change-a case study in the Tao River Basin in Northwestern China. Environ Res Lett 9:125003

    Article  Google Scholar 

  • Li K, Liu X, Herzschuh U et al (2014b) Rapid climate fluctuations over the past millennium: evidence from a lacustrine record of Basomtso Lake, southeastern Tibetan Plateau. Sci Rep 6:24806

    Article  Google Scholar 

  • Ljungqvist FC (2010) A new reconstruction of temperature variability in the extra-tropical Nothern Hemisphere during the last two millennia. Geografiska Annaler Series: A Phys Geogr 92:339–351

    Google Scholar 

  • MacDonald RE (2011) Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Clim Dyn 37:1399–1425

    Article  Google Scholar 

  • Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30:1820.https://doi.org/10.1029/2003GL017814.

  • Mann ME, Zhang Z, Rutherford S et al (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260

    Article  CAS  Google Scholar 

  • Martín-Puertas C, Valero-Garcés BL, Brauer A et al (2009) The Iberian-Roman Humid Period (2600–1600 calyr BP) in the Zoñar Lake varve record (Andalucía, southern Spain). Quatern Res 71:108–120

    Article  Google Scholar 

  • Masson-Delmotte V et al (2013) In climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF et al (eds) Cambridge University Press, pp 383–464

    Google Scholar 

  • Matthes FE (1939) Report of Committee on Glaciers. EOS Trans Am Geophys Union 20:518–523

    Google Scholar 

  • Matthews JA, Brifa KR (2005) The ‘little ice age’: re-evaluation of an evolving concept. Geografiska Annaler Ser A Phys Geogr 87:17–36

    Article  Google Scholar 

  • McCormick M, Büntgen U, Cane MA et al (2012) Climate change during and after the Roman Empire: reconstructing the past from scientific and historical evidence. J Interdiscip Hist 43(2):169–220

    Article  Google Scholar 

  • McCrindle JW (1877) Ancient India as described by Megasthenes and Arrian. Thacker, Spink

    Google Scholar 

  • McDermott F, Mattey DP, Hawkesworth C (2001) Centennial-scale Holocene climate variability revealed by a high-resolution speleothem 18O Record from SW Ireland. Science 294(5545):1328–1331

    Article  CAS  Google Scholar 

  • Misra P, Tandon SK, Sinha R (2019) Holocene climate records from lake sedimentsin India: assessment of coherence across climate zones. Earth-Sci Rev 190:370–397

    Article  Google Scholar 

  • Misra KG, Yadav RR, Misra S (2015) SatlujRiver flow variations since AD 1660 based on tree-ring network of Himalayan cedar from western Himalaya, India. Quatern Int 371:135–143

    Article  Google Scholar 

  • Mohanty RB, Mishra AK, Mishra K, Yadav AK, Quamar MF, Barua IC, Kar R (2024) Early onset of aridity in the past millennium: insights from vegetation dynamics and climate change in the alpine, cold-desert region of Trans Himalaya, India. PLOS ONE 19(1):e0295785

    Google Scholar 

  • Morrill C, Overpeck JY, Cole JE (2003) A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. The Holocene 13(4):465–476

    Article  Google Scholar 

  • Naidu PD, Ganeshram R, Bollasina MA et al (2020) Coherent response of the Indian monsoonal rainfall to Atlantic multi-decadal variability over the last 2000 years. Sci Rep 10:1302. https://doi.org/10.1038/s41598-020-58265-3

    Article  CAS  Google Scholar 

  • Neukom R,Steiger N, José Gómez-Navarro J et al (2019) No evidence of globally coherent warm and cold periods over the pre-industrial Common Era

    Google Scholar 

  • Pillai AA, Anoop A, Prasad V et al (2018) Multi-proxy evidence for an arid shift in the climate and vegetation of the Banni grasslands of western India during the mid-to late-Holocene. Holocene 28(7):1057–1070

    Article  Google Scholar 

  • Prasad S, Anoop A, Riedel N, Sarkar S, Menzel P, Basavaiah N, Krishnan R, Fuller D, Plessen B, Gaye B, Röhl U, Wilkes H, Sachse D, Sawant R, Wiesner M, Stebich M (2014) Prolonged monsoon droughts and links to Indo-Pacific warm pool: a Holocene record from Lonar Lake, Central India. Earth Planet Sci Lett 391:171–182. https://doi.org/10.1016/j.epsl.2014.01.043

  • Quamar MF (2019) Vegetation dynamics in response to climate change from the wetlands of Western Himalaya, India: Holocene Indian Summer Monsoon variability. The Holocene 29(2):345–362

    Google Scholar 

  • Quamar MF (2022a) Holocene vegetation and climate change from central India: An updated and a detailed pollen-based review. In: Kumaran KPN, Padmalal D (eds) Holocene climate change and environment. London, Elsevier

    Google Scholar 

  • Quamar MF (2022b) Monsoonal climatic reconstruction from central India during the last ca. 3600 calyr: signatures of global climatic events, based on lacustrine sediment pollen records. Palynology 46(1):930605

    Google Scholar 

  • Quamar MF (2022c) Late Holocene vegetation and monsoonal climate change from the Western Himalaya, India. Acta Palaeobotanica 62(1):36–49

    Google Scholar 

  • Quamar MF, Bera SK (2020) Pollen records of vegetation dynamics, climate change and ISM variability since the LGM from Chhattisgarh State, central India. Rev Palaeobot Palynol:104237.https://doi.org/10.1016/j.revpalbo.2020.104237

  • Quamar MF, Bera SK (2021) A 8400-year pollen record of vegetation dynamics and Indian Summer Monsoon climate from central Indian Core Monsoon Zone: Signatures of global climatic events. J Palaeontol Soc India 66(1):12–22

    Google Scholar 

  • Quamar MF, Chauhan MS (2014) Signals of Medieval Warm Period and Little Ice Age from southwestern Madhya Pradesh (India): A pollen-inferred Late-Holocene vegetation and climate change. Quat Int 325:74–82

    Article  Google Scholar 

  • Quamar MF, Kar R (2020) Prolonged warming over the last ca. 11,700 years from the central Indian Core Monsoon Zone: Pollen evidence and a synoptic overview. Rev Palaeobot Palynol 104159. https://doi.org/10.1016/j.revpalbo.2020.104159

  • Quamar MF, Kar R, Thakur B (2021) Vegetation response to the Indian Summer Monsoon (ISM) rainfall variability during the Late Holocene from the central Indian Core Monsoon Zone. The Holocene 31(7):1197–1211

    Article  Google Scholar 

  • Quamar MF, Mir IA, Jaiswal J, Bharti N, Dabhi AJ, Bhushan R, Prasad N, Javed M (2023) Hydro-climatic variability and consequent vegetation response during CE 1219–1942 from the Western Ghats, India. Catena 232:107448

    Article  Google Scholar 

  • Quamar MF, Banerji US, Thakur B, Kar R (2024) Hydroclimatic changes in the core monsoon zone of India since the last glacial maximum: an overview of the palynological data and correlation with the marine and continentalrecords. Palaeogeogr Palaeoclimatol Palaeoecol 633:111844.

    Google Scholar 

  • Rawat S, Gupta AK, Sangode SJ et al (2015) Late Pleistocene-Holocene vegetation and Indian summer monsoon record from the Lahaul, Northwest Himalaya, India. Quat Sci Rev 114:167–181

    Article  Google Scholar 

  • Reddy AP, Gandhi N, Yadava MG (2022) The Indian monsoon variability during the last two millennia and links to the tropical equatorial Pacific. Clim Dyn. https://doi.org/10.1007/s00382-022-06513-9

    Article  Google Scholar 

  • Rothlisberger F (1986) 10,000 Jahre Gletschergeschichteder Erde(Sauerlan der, Aarau)

    Google Scholar 

  • Royer DL (2008) Linkages between CO2, climate and evolution in deep time Proc. Natl Acad Sci Unit States Am 105(2):407–408

    Article  CAS  Google Scholar 

  • Ruhland K, Phadtare NR, Pant RK et al (2006) Accelerated melting of Himalayan snow and ice triggers pronounced changes in a valley peatland from Northern India. Geophys Res Lett 33:15

    Google Scholar 

  • Sanwal J, Kotlia BS, Rajendran C et al (2013) Climatic variability in central Indian Himalaya during the last ~1800 years:evidence from a high resolution speleothem record. Quatern Int 304:183–192

    Article  Google Scholar 

  • SeidenkrantzMS SAS, Sulsbrück H et al (2007) Hydrography and climateof the last 4400 years in a SWGreenland fjord: implications for Labrador Sea palaeoceanography. The Holocene 3:387–401

    Article  Google Scholar 

  • Sharma SN (1995) An advanced competitive botany. Students Friends, Govind Mitra Road, Patna, 800004, Bihar, India

    Google Scholar 

  • Sharma C, Chauhan MS (2001a) Late Holocenevegetation andclimate from Kupup Lake, Sikkim Himalaya, India. J Palaeontol Soc India 46:51–58

    Google Scholar 

  • Singh U (2008) A history of ancient and early Medieval India: from the stone age to the 12th century (PB). Pearson Education India

    Google Scholar 

  • Singh S, Gupta A, Dutt S et al (2020) Abrupt shifts in the Indian summer monsoon during the last three millennia. Quat Int. https://doi.org/10.1016/j.quaint.2020.08.033

  • Singh DS, Gupta AK, Sangode SJ et al (2015) Multiproxy record of monsoon variability from the Ganga Plain during 400–1200 AD. Quat Int 371:157–163

    Article  Google Scholar 

  • Singh V, Misra KG, Singh AD et al (2021) Little Ice Age revealed in tree-ringbased precipitation record from the northwest Himalaya, India. Geophys Res Lett 48: e2020GL091298.https://doi.org/10.1029/2020GL091298

  • Singhvi AK, Bhattacharyya A, Kale VS et al (2010) Instrumental, terrestrial and marine records of the climate of south Asia during the Holocene: present status, unresolved problems and societal aspects. In: Global environmental changes in South Asia, Springer, The Netherlands, pp 54–124

    Google Scholar 

  • Sinha A, Cannariato KG, Stott LD et al (2005) Variability of southwest Indian summer monsoon precipitation during the Bolling-Allerod. Geology 33(10):813–816. https://doi.org/10.1130/G21498

    Article  CAS  Google Scholar 

  • Sinha A et al (2010) A global context for megadroughts in monsoon Asia during the past millennium. Quatern Sci Rev. https://doi.org/10.1016/j.quascirev.2010.10.005

    Article  Google Scholar 

  • Sinha ABM, Stott L et al (2011) The leading mode of Indian Summer Monsoon precipitation variability during the last millennium. Geophys Res Lett 38:L15703. https://doi.org/10.1029/2011GL047713

  • Sharma C, Chauhan MS (2001b) Late Holocene vegetation and climate from KupupLake, Sikkim Himalaya, India. J Palaeontological Soc India 46:51–58

    Google Scholar 

  • Sodhi A, Das A, Prozomwala SP (2022) Centennial-scale linkages between the Indian Summer Monsoon and the solar irradiation from the Gulf of Khambhat (Western India). Quatern Int 631:82–92

    Article  Google Scholar 

  • Solanki SK, Usoskin IG, Kromer B et al (2004) Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431(7012):1084–1087

    Article  CAS  Google Scholar 

  • Sun A, Yang A, Wu et al (2020) Climate change on the northeastern Tibetan Plateau during the past ~600 years inferred from peat pollen records. Rev Palaeobot Palynol 276:104194

    Google Scholar 

  • Tripathi S, Thakur B, Nautiyal CM et al (2020) Floristic and climatic reconstruction in the Indo-Burma region for the last 13,000 cal. yr: a palynological interpretation from the endangered wetlands of Assam, northeast India. The Holocene 30(2):315–331

    Google Scholar 

  • von Rad U, Schaaf M, Michels KH et al(1999) A 5000-yr record of climate change in varved sediments from the oxygen minimum zone of Pakistan, Northeastern Arabian Sea. Quat Res 51:39–53.https://doi.org/10.1006/qres.1998.2016

  • Walker M, Gubbard P, Head MJ et al (2019) Formal subdivision of the holocene series/epoch: a summary. J Geol Soc India 93:135–141

    Google Scholar 

  • Wang Y, Cheng H, Edwards RL et al (2005a) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857

    Article  CAS  Google Scholar 

  • Wang P, Clemens S, Beaufort L et al (2005b) Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quatern Sci Rev 24(5):595–629

    Article  Google Scholar 

  • Wang T, Surge D, Mithen S (2012) Seasonal temperature variability of the Neoglacial (3300–2500 BP) and Roman warm period (2500–1600 BP) reconstructed from oxygen isotope ratios of limpet shells (Patella vulgata), Northwest Scotland. Palaeogeogr Palaeoclimatol Palaeoecol 317:104–113

    Article  Google Scholar 

  • Wanner H, Solomina O, Grosjean M et al (2011) Structure and origin of Holocene cold events. Quat Sci Rev 30(21–22):3109–3123

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res Oceans 103(C7):14451–14510

    Article  Google Scholar 

  • Wu W, Tan W, Zhou L et al (2012) Sea surface temperature variability in southern Okinawa trough during last 2700 years. Geophys Res Lett 39:L14705. https://doi.org/10.11029/2012GL052749

    Article  Google Scholar 

  • Xu H, Jianghu L, Sheng E, Liu B, Yu K, Ye Y, Shi Z, Cheng P, Wang X, Zhou X, Yeager KM (2016) Hydroclimatic contrasts over Asian monsoon areas and linkages to tropical Pacific SSTs. Sci Rep 6:33177. https://doi.org/10.1038/srep33177

  • Yadav RR, Singh J (2002) Tree-ring-based spring temperature patterns over the past four centuries in Western Himalaya. Quatern Res 57:299–330

    Article  Google Scholar 

  • Zhang Y, Zhao CK, Shun Y, Zen JY et al (2009) Medieval Warm Period” on the northern slope of central Tianshan Mountains, Xinjiang, NW China. Geophys Res Lett 36:L11702. https://doi.org/10.1029/2009GL037375

  • Zhang W, Wang L, Xiang F, Qin W, Jiang W (2020) Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze river and Yellow River Basin, China. Ecological Indicatots 110:105892. https://doi.org/10.1016/j.ecolind.2019.105892

Download references

Acknowledgements

I am thankful to Dr. (Mrs.) Vandana Prasad, Director, Birbal Sahni Institute of Palaeosciences (BSIP), Lucknow, India for providing the infrastructure facilities to complete the review work, and also for the permission to publish. Thanks are also due to Dr. Bandana Samant, Professor, P.G. Department of Geology, R.T.M. Nagpur University, Nagpur, India for the invitation to contribute this review article as a chapter in the book entitled “Application of palynology in stratigraphy and climate studies” published by the Springer, Switzerland, and edited by her. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Firoze Quamar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quamar, M.F. (2024). Palynological Perspective on Understanding Climate Change in India Over the Pre-industrial Common Era (CE; Past Ca. 2000 Years): a Comprehensive Review and a Critical Evaluation. In: Samant, B., Thakre, D. (eds) Applications of Palynology in Stratigraphy and Climate Studies. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-031-51877-5_7

Download citation

Publish with us

Policies and ethics