Skip to main content

Cardiac Scintigraphy with Bone-Avid Tracers: Old and New Applications

  • Chapter
  • First Online:
Cardiac Amyloidosis

Abstract

Owing to advances in cardiac scintigraphy with technetium-99m-labeled bone-avid radiotracers, transthyretin cardiac amyloidosis is now recognized as a prevalent cause of heart failure in the elderly. Technetium-99m-labeled bone-avid radiotracers, in the absence of a clonal abnormality, can noninvasively diagnose transthyretin cardiac amyloidosis without a need for an endomyocardial biopsy. Moreover, novel quantitative approaches to technetium-99m-labeled bone-avid radiotracer cardiac scintigraphy are further expanding its applications to disease monitoring. This chapter reviews current and novel applications of bone-avid tracer cardiac scintigraphy in the management of patients with transthyretin cardiac amyloidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–16.

    Article  CAS  PubMed  Google Scholar 

  2. Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  3. Ali A, Turner DA, Rosenbush SW, Fordham EW. Bone Scintigram in cardiac amyloidosis: a case report. Clin Nucl Med. 1981;6(3):105–8.

    Article  CAS  PubMed  Google Scholar 

  4. Schiff S, Bateman T, Moffatt R, Davidson R, Berman D. Diagnostic considerations in cardiomyopathy: unique scintigraphic pattern of diffuse biventricular technetium-99m-pyrophosphate uptake in amyloid heart disease. Am Heart J. 1982;103(4, Part 1):562–3.

    Article  CAS  PubMed  Google Scholar 

  5. Sobol SM, Brown JM, Bunker SR, Patel J, Lull RJ. Noninvasive diagnosis of cardiac amyloidosis by technetium-99m-pyrophosphate myocardial scintigraphy. Am Heart J. 1982;103(4, Part 1):563–6.

    Article  CAS  PubMed  Google Scholar 

  6. Li CK, Rabinovitch MA, Juni JE, Thrall JH, Pitt B, Das SK, et al. Scintigraphic characterization of amyloid cardiomyopathy. Clin Nucl Med. 1985;10(3):156–9.

    Article  CAS  PubMed  Google Scholar 

  7. Janssen S, van Rijswijk MH, Albertus Piers D, de Jong GMT. Soft-tissue uptake of 99mTc-diphosphonate in systemic AL amyloidosis. Eur J Nucl Med. 1984;9(12):538–41.

    Article  CAS  PubMed  Google Scholar 

  8. Falk RH, Lee VW, Rubinow A, Hood WB, Cohen AS. Sensitivity of technetium-99m-pyrophosphate scintigraphy in diagnosing cardiac amyloidosis. Am J Cardiol. 1983;51(5):826–30.

    Article  CAS  PubMed  Google Scholar 

  9. Gertz MA, Brown ML, Hauser MF, Kyle RA. Utility of technetium Tc 99m pyrophosphate bone scanning in cardiac amyloidosis. Arch Intern Med. 1987;147(6):1039–44.

    Article  CAS  PubMed  Google Scholar 

  10. Perugini E, Guidalotti PL, Salvi F, Cooke RMT, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-Diphosphono-1,2-Propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46(6):1076–84.

    Article  PubMed  Google Scholar 

  11. Rapezzi C, Quarta CC, Guidalotti PL, Longhi S, Pettinato C, Leone O, et al. Usefulness and limitations of 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy. Eur J Nucl Med Mol Imaging. 2011;38(3):470–8.

    Article  PubMed  Google Scholar 

  12. Buja LM, Parkey RW, Dees JH, Stokely EM, Harris RA, Bonte FJ, Willerson JT. Morphologic correlates of technetium-99m stannous pyrophosphate imaging of acute myocardial infarcts in dogs. Circulation. 1975;52(4):596–607.

    Article  CAS  PubMed  Google Scholar 

  13. Stats MA, Stone JR. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc Pathol. 2016;25(5):413–7.

    Article  CAS  PubMed  Google Scholar 

  14. Dweck MR, Jenkins WSA, Vesey AT, Pringle MAH, Chin CWL, Malley TS, et al. 18F-sodium fluoride uptake is a marker of active calcification and disease progression in patients with aortic stenosis. Circ Cardiovasc Imaging. 2014;7(2):371–8.

    Article  PubMed  Google Scholar 

  15. Ishiwata Y, Kaneta T, Nawata S, Hino-Shishikura A, Yoshida K, Inoue T. Quantification of temporal changes in calcium score in active atherosclerotic plaque in major vessels by 18F-sodium fluoride PET/CT. Eur J Nucl Med Mol Imaging. 2017;44(9):1529–37.

    Article  CAS  PubMed  Google Scholar 

  16. Martineau P, Finnerty V, Giraldeau G, Authier S, Harel F, Pelletier-Galarneau M. Examining the sensitivity of 18F-NaF PET for the imaging of cardiac amyloidosis. J Nucl Cardiol. 2021;28(1):209–18.

    Article  PubMed  Google Scholar 

  17. Morgenstern R, Yeh R, Castano A, Maurer MS, Bokhari S. (18)fluorine sodium fluoride positron emission tomography, a potential biomarker of transthyretin cardiac amyloidosis. J Nucl Cardiol. 2018;25(5):1559–67.

    Article  PubMed  Google Scholar 

  18. Lee VW, Caldarone AG, Falk RH, Rubinow A, Cohen AS. Amyloidosis of heart and liver: comparison of Tc-99m pyrophosphate and Tc-99m methylene diphosphonate for detection. Radiology. 1983;148(1):239–42.

    Article  CAS  PubMed  Google Scholar 

  19. Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. 99mTc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013;6(2):195–201.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Quarta CC, Guidalotti PL, Longhi S, Pettinato C, Leone O, Ferlini A, et al. Defining the diagnosis in Echocardiographically suspected senile systemic amyloidosis. JACC Cardiovasc Imaging. 2012;5(7):755–8.

    Article  PubMed  Google Scholar 

  21. Glaudemans AW, van Rheenen RW, van den Berg MP, Noordzij W, Koole M, Blokzijl H, et al. Bone scintigraphy with (99m)technetium-hydroxymethylene diphosphonate allows early diagnosis of cardiac involvement in patients with transthyretin-derived systemic amyloidosis. Amyloid. 2014;21(1):35–44.

    Article  CAS  PubMed  Google Scholar 

  22. Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7(2):157–65.

    Article  PubMed  Google Scholar 

  23. Gillmore JD, Maurer MS, Falk RH, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–12.

    Article  CAS  PubMed  Google Scholar 

  24. Palladini G, Russo P, Bosoni T, Verga L, Sarais G, Lavatelli F, et al. Identification of amyloidogenic light chains requires the combination of serum-free light chain assay with immunofixation of serum and urine. Clin Chem. 2009;55(3):499–504.

    Article  CAS  PubMed  Google Scholar 

  25. Rauf MU, Hawkins PN, Cappelli F, Perfetto F, Zampieri M, Argiro A, et al. Tc-99m labelled bone scintigraphy in suspected cardiac amyloidosis. Eur Heart J. 2023;44(24):2187–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garcia-Pavia P, Rapezzi C, Adler Y, Arad M, Basso C, Brucato A, et al. Diagnosis and treatment of cardiac amyloidosis. A position statement of the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur J Heart Fail. 2021;23(4):512–26.

    Article  PubMed  Google Scholar 

  27. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 1 of 2-evidence base and standardized methods of imaging. Circ Cardiovasc Imaging. 2021;14(7):e000029.

    PubMed  Google Scholar 

  28. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 2 of 2—diagnostic criteria and appropriate utilization. Circ Cardiovasc Imaging. 2021;14(7):e000030.

    PubMed  Google Scholar 

  29. Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol. 2016;1(8):880–9.

    Article  PubMed  Google Scholar 

  30. Aimo A, Merlo M, Porcari A, et al. Redefining the epidemiology of cardiac amyloidosis. A systematic review and meta-analysis of screening studies. Eur J Heart Fail. 2022;24(12):2342–51.

    Article  CAS  PubMed  Google Scholar 

  31. Mohammed SF, Mirzoyev SA, Edwards WD, Dogan A, Grogan DR, Dunlay SM, et al. Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2014;2(2):113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  32. González-López E, Gallego-Delgado M, Guzzo-Merello G, de Haro-del Moral FJ, Cobo-Marcos M, Robles C, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015;36(38):2585–94.

    Article  PubMed  Google Scholar 

  33. Bennani Smires Y, Victor G, Ribes D, Berry M, Cognet T, Méjean S, et al. Pilot study for left ventricular imaging phenotype of patients over 65 years old with heart failure and preserved ejection fraction: the high prevalence of amyloid cardiomyopathy. Int J Cardiovasc Imaging. 2016;32(9):1403–13.

    Article  PubMed  Google Scholar 

  34. AbouEzzeddine OF, Davies DR, Scott CG, Fayyaz AU, Askew JW, McKie PM, et al. Prevalence of transthyretin amyloid cardiomyopathy in heart failure with preserved ejection fraction. JAMA Cardiol. 2021;6(11):1267–74.

    Article  PubMed  Google Scholar 

  35. Devesa A, Camblor Blasco A, Pello Lázaro AM, Askari E, Lapeña G, Gómez Talavera S, et al. Prevalence of transthyretin amyloidosis in patients with heart failure and no left ventricular hypertrophy. ESC Heart Fail. 2021;8(4):2856–65.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Castaño A, Narotsky DL, Hamid N, Khalique OK, Morgenstern R, DeLuca A, et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J. 2017;38(38):2879–87.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Scully PR, Patel KP, Treibel TA, Thornton GD, Hughes RK, Chadalavada S, et al. Prevalence and outcome of dual aortic stenosis and cardiac amyloid pathology in patients referred for transcatheter aortic valve implantation. Eur Heart J. 2020;41(29):2759–67.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nitsche C, Scully PR, Patel KP, Kammerlander AA, Koschutnik M, Dona C, et al. Prevalence and outcomes of concomitant aortic stenosis and cardiac amyloidosis. J Am Coll Cardiol. 2021;77(2):128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nitsche C, Aschauer S, Kammerlander AA, Schneider M, Poschner T, Duca F, et al. Light-chain and transthyretin cardiac amyloidosis in severe aortic stenosis: prevalence, screening possibilities, and outcome. Eur J Heart Fail. 2020;22(10):1852–62.

    Article  CAS  PubMed  Google Scholar 

  40. Rosenblum H, Masri A, Narotsky DL, Goldsmith J, Hamid N, Hahn RT, et al. Unveiling outcomes in coexisting severe aortic stenosis and transthyretin cardiac amyloidosis. Eur J Heart Fail. 2021;23(2):250–8.

    Article  CAS  PubMed  Google Scholar 

  41. Treibel TA, Fontana M, Gilbertson JA, Castelletti S, White SK, Scully PR, et al. Occult transthyretin cardiac amyloid in severe calcific aortic stenosis: prevalence and prognosis in patients undergoing surgical aortic valve replacement. Circ Cardiovasc Imaging. 2016;9(8):e005066.

    Article  PubMed  Google Scholar 

  42. Gioeva Z, Urban P, Rüdiger Meliss R, Haag J, Axmann H-D, Siebert F, et al. ATTR amyloid in the carpal tunnel ligament is frequently of wildtype transthyretin origin. Amyloid. 2013;20(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  43. Kyle RA, Eilers SG, Linscheid RL, Gaffey TA. Amyloid localized to Tenosynovium at carpal tunnel release: natural history of 124 cases. Am J Clin Pathol. 1989;91(4):393–7.

    Article  CAS  PubMed  Google Scholar 

  44. Sperry BW, Reyes BA, Ikram A, Donnelly JP, Phelan D, Jaber WA, et al. Tenosynovial and cardiac amyloidosis in patients undergoing carpal tunnel release. J Am Coll Cardiol. 2018;72(17):2040–50.

    Article  PubMed  Google Scholar 

  45. Fosbol EL, Rorth R, Leicht BP, Schou M, Maurer MS, Kristensen SL, et al. Association of Carpal Tunnel Syndrome with Amyloidosis, heart failure, and adverse cardiovascular outcomes. J Am Coll Cardiol. 2019;74(1):15–23.

    Article  PubMed  Google Scholar 

  46. Milandri A, Farioli A, Gagliardi C, Longhi S, Salvi F, Curti S, et al. Carpal tunnel syndrome in cardiac amyloidosis: implications for early diagnosis and prognostic role across the spectrum of aetiologies. Eur J Heart Fail. 2020;22(3):507–15.

    Article  CAS  PubMed  Google Scholar 

  47. Zegri-Reiriz I, de Haro-Del Moral FJ, Dominguez F, Salas C, de la Cuadra P, Plaza A, et al. Prevalence of cardiac amyloidosis in patients with carpal tunnel syndrome. J Cardiovasc Transl Res. 2019;12(6):507–13.

    Article  PubMed  Google Scholar 

  48. Westin O, Fosbol EL, Maurer MS, Leicht BP, Hasbak P, Mylin AK, et al. Screening for cardiac amyloidosis 5 to 15 years after surgery for bilateral carpal tunnel syndrome. J Am Coll Cardiol. 2022;80(10):967–77.

    Article  CAS  PubMed  Google Scholar 

  49. Ladefoged B, Clemmensen T, Dybro A, Hartig-Andreasen C, Kirkeby L, Gormsen LC, et al. Identification of wild-type transthyretin cardiac amyloidosis in patients with carpal tunnel syndrome surgery (CACTuS). ESC Heart Fail. 2023;10(1):234–44.

    Article  PubMed  Google Scholar 

  50. Ioannou A, Patel RK, Razvi Y, Porcari A, Sinagra G, Venneri L, et al. Impact of earlier diagnosis in cardiac ATTR amyloidosis over the course of 20 years. Circulation. 2022;146(22):1657–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gillmore JD, Damy T, Fontana M, Hutchinson M, Lachmann HJ, Martinez-Naharro A, et al. A new staging system for cardiac transthyretin amyloidosis. Eur Heart J. 2018;39(30):2799–806.

    Article  CAS  PubMed  Google Scholar 

  52. Nativi-Nicolau J, Siu A, Dispenzieri A, Maurer MS, Rapezzi C, Kristen AV, et al. Temporal trends of wild-type transthyretin amyloid cardiomyopathy in the transthyretin amyloidosis outcomes survey. JACC CardioOncol. 2021;3(4):537–46.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gilstrap LG, Dominici F, Wang Y, El-Sady MS, Singh A, Carli MFD, et al. Epidemiology of Cardiac Amyloidosis–Associated Heart Failure Hospitalizations Among Fee-for-Service Medicare Beneficiaries in the United States. Circ Heart Fail. 2019;12(6):e005407.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ioannou A, Patel RK, Razvi Y, Porcari A, Knight D, Martinez-Naharro A, et al. Multi-imaging characterization of cardiac phenotype in different types of amyloidosis. J Am Coll Cardiol Img. 2023;16(4):464–77.

    Article  Google Scholar 

  55. Dorbala S, Park MA, Cuddy S, Singh V, Sullivan K, Kim S, et al. Absolute quantitation of cardiac (99m)Tc-pyrophosphate using cadmium-zinc-telluride-based SPECT/CT. J Nucl Med. 2021;62(5):716–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fontana M, Martinez-Naharro A, Chacko L, Rowczenio D, Gilbertson JA, Whelan CJ, et al. Reduction in CMR derived extracellular volume with Patisiran indicates cardiac amyloid regression. J Am Coll Cardiol Img. 2021;14(1):189–99.

    Article  Google Scholar 

  57. Rettl R, Wollenweber T, Duca F, Binder C, Cherouny B, Dachs TM, et al. Monitoring tafamidis treatment with quantitative SPECT/CT in transthyretin amyloid cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2023;24(8):1019–30.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Dorbala .

Editor information

Editors and Affiliations

Ethics declarations

This work was supported by the National Institutes of Health grant to Dorbala: K24 HL157648.

Conflicts of Interest

SD: Consulting fees: Pfizer, GE Healthcare; investigator-initiated grant: Pfizer, Attralus, GE Healthcare, Philips.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vijayakumar, S., Dorbala, S. (2024). Cardiac Scintigraphy with Bone-Avid Tracers: Old and New Applications. In: Emdin, M., Vergaro, G., Aimo, A., Fontana, M. (eds) Cardiac Amyloidosis. Springer, Cham. https://doi.org/10.1007/978-3-031-51757-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51757-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51756-3

  • Online ISBN: 978-3-031-51757-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics