Skip to main content

Vibration Damping Applications with Cork Composites

  • Chapter
  • First Online:
Cork-Based Materials in Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 52 Accesses

Abstract

Cork composites, which are made from natural cork with other materials to increase their performance, have recently been considered for vibration damping applications. This chapter provides an overview of cork composites, emphasizing their structure, properties, manufacturing methods, and applications. We also present a case study on the vibration behavior of three distinct types of cork composites: fine-grained agglomerated cork, VC1001, and VCPAD5051. Fine-grained cork, with its unique cellular structure, exhibits greater stiffness, damping, and natural frequency characteristics than other composites. VC1001, a combination of cork and natural rubber, offers a balance between damping and stiffness, while VCPAD5051, a combination of cork and polymer matrix, shows intermediate properties. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Şen A et al (2011) The cellular structure of cork from Quercus cerris var. cerris bark in a materials’ perspective. Ind Crop Prod 34:929–936

    Article  Google Scholar 

  2. Pereira H (2011) Cork: biology, production and uses. Elsevier, Amsterdam

    Google Scholar 

  3. Silva S et al (2005) Cork: properties, capabilities and applications. Int Mater Rev 50(6):345–365

    Article  Google Scholar 

  4. Silvestre AJ, Neto CP, Gandini A (2008) Cork and suberins: major sources, properties and applications. In: Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 305–320

    Chapter  Google Scholar 

  5. Gil L (2015) Cork. In: Materials for construction and civil engineering: science, processing, and design. Springer, Cham, pp 585–627

    Chapter  Google Scholar 

  6. Bugalho MN et al (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9(5):278–286

    Article  Google Scholar 

  7. Monteiro S et al (2022) Cross contamination of 2, 4, 6-trichloroanisole in cork stoppers. J Agric Food Chem 70(22):6747–6754

    Article  Google Scholar 

  8. Domke GM et al (2020) Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc Natl Acad Sci 117(40):24649–24651

    Article  Google Scholar 

  9. Costa A et al (2022) Beyond width and density: stable carbon and oxygen isotopes in cork-rings provide insights of physiological responses to water stress in Quercus suber L. PeerJ 10:e14270

    Article  Google Scholar 

  10. Demertzi M et al (2016) A carbon footprint simulation model for the cork oak sector. Sci Total Environ 566:499–511

    Article  Google Scholar 

  11. Acácio V et al (2017) Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types. Glob Chang Biol 23(3):1199–1217

    Article  Google Scholar 

  12. Gil L (2009) Cork composites: a review. Materials 2(3):776–789

    Article  Google Scholar 

  13. Barnat-Hunek D et al (2018) Impact of different binders on the roughness, adhesion strength, and other properties of mortars with expanded cork. Materials 11(3):364

    Article  Google Scholar 

  14. Gil L (2015) New cork-based materials and applications. Materials 8(2):625–637

    Article  MathSciNet  Google Scholar 

  15. Martins CI, Gil V (2020) Processing–structure–properties of cork polymer composites. Front Mater 7:297

    Article  Google Scholar 

  16. Santos P et al (2017) Agglomerated cork: a way to tailor its mechanical properties. Compos Struct 178:277–287

    Article  Google Scholar 

  17. Gibson L, Easterling K, Ashby MF (1981) The structure and mechanics of cork. Proc R Soc Lond Math Phys Sci 377(1769):99–117

    Google Scholar 

  18. Merabti S et al (2021) Thermo-mechanical and physical properties of waste granular cork composite with slag cement. Constr Build Mater 272:121923

    Article  Google Scholar 

  19. Sheikhi MR, Gürgen S (2022) Anti-impact design of multi-layer composites enhanced by shear thickening fluid. Compos Struct 279:114797

    Article  Google Scholar 

  20. Sheikhi MR, Gürgen S (2022) Deceleration behavior of multi-layer cork composites intercalated with a non-Newtonian material. Arch Civil Mech Eng 23(1):2

    Article  Google Scholar 

  21. Sheikhi MR, Gürgen S, Altuntas O (2022) Energy-absorbing and eco-friendly perspectives for cork and WKSF based composites under drop-weight impact machine. Machines 10(11):1050

    Article  Google Scholar 

  22. Fernandes FA et al (2019) Helmet design based on the optimization of biocomposite energy-absorbing liners under multi-impact loading. Appl Sci 9(4):735

    Article  Google Scholar 

  23. Fernandes F et al (2023) Cork composites for structural applications. In: Green sustainable process for chemical and environmental engineering and science. Elsevier, Amsterdam, pp 29–51

    Chapter  Google Scholar 

  24. Serra GF et al (2022) New hybrid cork-STF (Shear thickening fluid) polymeric composites to enhance head safety in micro-mobility accidents. Compos Struct 301:116138

    Article  Google Scholar 

  25. Kaczynski P et al (2019) High-energy impact testing of agglomerated cork at extremely low and high temperatures. Int J Impact Eng 126:109–116

    Article  Google Scholar 

  26. Kaczyński P, Ptak M, Fernandes F (2019) Development and testing of advanced cork composite sandwiches for energy-absorbing structures. Materials (Basel) 12

    Google Scholar 

  27. Ptak M et al (2017) Assessing impact velocity and temperature effects on crashworthiness properties of cork material. Int J Impact Eng 106:238–248

    Article  Google Scholar 

  28. Gürgen S et al (2021) Development of eco-friendly shock-absorbing cork composites enhanced by a non-Newtonian fluid. Appl Compos Mater 28:165–179

    Article  Google Scholar 

  29. Composites AC (2023) Amorim cork composites, materials & applications. Available from: https://amorimcorkcomposites.com/en-us/

  30. Chung D (2001) Materials for vibration damping. J Mater Sci 36:5733–5737

    Article  Google Scholar 

  31. Zhou X et al (2016) Research and applications of viscoelastic vibration damping materials: a review. Compos Struct 136:460–480

    Article  Google Scholar 

  32. Jones DI (2001) Handbook of viscoelastic vibration damping. Wiley, New York

    Google Scholar 

  33. Santos Silva J, Dias Rodrigues J, Moreira R (2010) Application of cork compounds in sandwich structures for vibration damping. J Sandw Struct Mater 12(4):495–515

    Article  Google Scholar 

  34. Sheikhi MR et al (2023) Anti-impact and vibration-damping design of cork-based sandwich structures for low-speed aerial vehicles. Arch Civil Mech Eng 23(2):71

    Article  Google Scholar 

  35. Gürgen S, Sofuoğlu MA (2021) Smart polymer integrated cork composites for enhanced vibration damping properties. Compos Struct 258:113200

    Article  Google Scholar 

  36. Liu C-X et al (2022) Modal characteristics of a sustainable sandwich structure with cork stopper cores. Constr Build Mater 349:128721

    Article  Google Scholar 

  37. Karpenko M, Nugaras J (2022) Vibration damping characteristics of the cork-based composite material in line to frequency analysis. J Theor Appl Mech 60

    Google Scholar 

  38. Sheikhi MR, Sofuoğlu MA, Chen Z (2023) Shear thickening fluid integrated sandwich structures for vibration isolation. In: Shear thickening fluid: case studies in engineering. Springer, Cham, pp 27–40

    Chapter  Google Scholar 

  39. Lopes H et al (2021) The influence of cork and manufacturing parameters on the properties of cork–rubber composites for vibration isolation applications. Sustainability 13(20):11240

    Article  Google Scholar 

  40. Prabhakaran S et al (2020) Experimental investigation on impact, sound, and vibration response of natural-based composite sandwich made of flax and agglomerated cork. J Compos Mater 54(5):669–680

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Amorim Cork Composites for generously providing the cork composites for our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheikhi, M.R., Sofuoğlu, M.A., Li, J. (2024). Vibration Damping Applications with Cork Composites. In: Gürgen, S. (eds) Cork-Based Materials in Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-51564-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51564-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51563-7

  • Online ISBN: 978-3-031-51564-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics