Skip to main content

Distributed Multiple Hypothesis Tracker for Mobile Sensor Networks

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems (DARS 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 28))

Included in the following conference series:

  • 189 Accesses

Abstract

This paper proposes a distributed estimation and control algorithm to allow a team of robots to search for and track an unknown number of targets. The number of targets in the area of interest varies over time as targets enter or leave, and there are many sources of sensing uncertainty, including false positive detections, false negative detections, and measurement noise. The robots use a novel distributed Multiple Hypothesis Tracker (MHT) to estimate both the number of targets and the states of each target. A key contribution is a new data association method that reallocates target tracks across the team. The distributed MHT is compared against another distributed multi-target tracker to test its utility for multi-robot, multi-target tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhattacharya, S., Ghrist, R., Kumar, V.: Multi-robot coverage and exploration on Riemannian manifolds with boundaries. Int. J. Robot. Res. 33(1), 113–137 (2014). https://doi.org/10.1177/0278364913507324

    Article  Google Scholar 

  2. Blackman, S.: Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag. 19(1), 5–18 (2004). https://doi.org/10.1109/MAES.2004.1263228

    Article  Google Scholar 

  3. Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House Radar Library. Artech House (1999)

    Google Scholar 

  4. Chen, J., Xie, Z., Dames, P.: The semantic PHD filter for multi-class target tracking: from theory to practice. Robot. Auton. Syst. 149 (2022). https://doi.org/10.1016/j.robot.2021.103947

  5. Chong, C.Y., Mori, S., Reid, D.B.: Forty years of multiple hypothesis tracking - a review of key developments. In: 2018 21st International Conference on Information Fusion (FUSION), pp. 452–459 (2018). https://doi.org/10.23919/ICIF.2018.8455386

  6. Coraluppi, S., et al.: Distributed MHT with active and passive sensors. In: 2015 18th International Conference on Information Fusion (Fusion), pp. 2065–2072 (2015)

    Google Scholar 

  7. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004). https://doi.org/10.1109/TRA.2004.824698

    Article  Google Scholar 

  8. Dames, P., Kumar, V.: Experimental characterization of a bearing-only sensor for use with the PHD filter (2015)

    Google Scholar 

  9. Dames, P.M.: Distributed multi-target search and tracking using the PHD filter. Auton. Robot. 44(3), 673–689 (2020). https://doi.org/10.1007/s10514-019-09840-9

    Article  Google Scholar 

  10. Deutsch, I., Liu, M., Siegwart, R.: A framework for multi-robot pose graph SLAM. In: 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 567–572 (2016). https://doi.org/10.1109/RCAR.2016.7784092

  11. Doitsidis, L., et al.: Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision. Auton. Robot. 33(1), 173–188 (2012). https://doi.org/10.1007/s10514-012-9292-1

  12. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999). https://doi.org/10.1137/S0036144599352836

    Article  MathSciNet  Google Scholar 

  13. Fortmann, T., Bar-Shalom, Y., Scheffe, M.: Sonar tracking of multiple targets using joint probabilistic data association. IEEE J. Oceanic Eng. 8(3), 173–184 (1983). https://doi.org/10.1109/JOE.1983.1145560

    Article  Google Scholar 

  14. Goldhoorn, A., Garrell, A., Alquézar, R., Sanfeliu, A.: Searching and tracking people with cooperative mobile robots. Auton. Robot. 42(4), 739–759 (2018). https://doi.org/10.1007/s10514-017-9681-6

    Article  Google Scholar 

  15. Gronauer, S., Diepold, K.: Multi-agent deep reinforcement learning: a survey. Artif. Intell. Rev. 55(2), 895–943 (2022). https://doi.org/10.1007/s10462-021-09996-w

    Article  Google Scholar 

  16. Kim, C., Li, F., Ciptadi, A., Rehg, J.M.: Multiple hypothesis tracking revisited. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4696–4704 (2015)

    Google Scholar 

  17. Konstantinova, P., Udvarev, A., Semerdjiev, T.: A study of a target tracking algorithm using global nearest neighbor approach. In: Proceedings of the 4th International Conference Conference on Computer Systems and Technologies: E-Learning, CompSysTech 2003, pp. 290–295 (2003). https://doi.org/10.1145/973620.973668

  18. Lee, S.G., Egerstedt, M.: Controlled coverage using time-varying density functions. IFAC Proc. Vol. 46(27), 220–226 (2013). https://doi.org/10.3182/20130925-2-DE-4044.00030

    Article  Google Scholar 

  19. Leonard, M.R., Zoubir, A.M.: Multi-target tracking in distributed sensor networks using particle PHD filters. Signal Process. 159, 130–146 (2019)

    Article  Google Scholar 

  20. Mahler, R.: Multitarget bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1152–1178 (2003). https://doi.org/10.1109/TAES.2003.1261119

    Article  Google Scholar 

  21. Murphy, R.: Human-robot interaction in rescue robotics. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 34(2), 138–153 (2004). https://doi.org/10.1109/TSMCC.2004.826267

    Article  Google Scholar 

  22. Parker, L.E.: Cooperative robotics for multi-target observation. Intell. Autom. Soft Comput. 5(1), 5–19 (1999)

    Article  Google Scholar 

  23. Pierson, A., Rus, D.: Distributed target tracking in cluttered environments with guaranteed collision avoidance. In: 2017 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), pp. 83–89 (2017). https://doi.org/10.1109/MRS.2017.8250935

  24. Pimenta, L.C.A., et al.: Simultaneous coverage and tracking (SCAT) of moving targets with robot networks. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds.) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol. 57, pp. 85–99. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-00312-7_6

    Chapter  Google Scholar 

  25. Qie, H., Shi, D., Shen, T., Xu, X., Li, Y., Wang, L.: Joint optimization of multi-UAV target assignment and path planning based on multi-agent reinforcement learning. IEEE Access 7, 146264–146272 (2019). https://doi.org/10.1109/ACCESS.2019.2943253

    Article  Google Scholar 

  26. Ribas, D., Ridao, P., Neira, J.: Localization with an a priori Map. In: Ribas, D., Ridao, P., Neira, J. (eds.) Underwater SLAM for Structured Environments Using an Imaging Sonar. Springer Tracts in Advanced Robotics, vol. 65, pp. 47–75. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14040-2_5

    Chapter  Google Scholar 

  27. Robin, C., Lacroix, S.: Multi-robot target detection and tracking: taxonomy and survey. Auton. Robot. 40(4), 729–760 (2016)

    Article  Google Scholar 

  28. Schuhmacher, D., Vo, B.T., Vo, B.N.: A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process. 56(8), 3447–3457 (2008). https://doi.org/10.1109/TSP.2008.920469

    Article  MathSciNet  Google Scholar 

  29. Schwager, M., Dames, P., Rus, D., Kumar, V.: A multi-robot control policy for information gathering in the presence of unknown hazards. In: Christensen, H.I., Khatib, O. (eds.) Robotics Research. STAR, vol. 100, pp. 455–472. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_26

    Chapter  Google Scholar 

  30. Stone, L.D., Streit, R.L., Corwin, T.L., Bell, K.L.: Bayesian Multiple Target Tracking. Artech House (2013)

    Google Scholar 

  31. Suresh, A.T., Yu, F.X., McMahan, H.B., Kumar, S.: Distributed mean estimation with limited communication. CoRR abs/1611.00429 (2016)

    Google Scholar 

  32. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    Google Scholar 

  33. Vo, B.T., Vo, B.N., Cantoni, A.: The cardinality balanced multi-target multi-bernoulli filter and its implementations. IEEE Trans. Signal Process. 57(2), 409–423 (2009). https://doi.org/10.1109/TSP.2008.2007924

    Article  MathSciNet  Google Scholar 

  34. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Rob. Syst. 10(12), 399 (2013). https://doi.org/10.5772/57313

    Article  Google Scholar 

  35. Zhou, W., Li, J., Liu, Z., Shen, L.: Improving multi-target cooperative tracking guidance for UAV swarms using multi-agent reinforcement learning. Chin. J. Aeronaut. 35(7), 100–112 (2022). https://doi.org/10.1016/j.cja.2021.09.008

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by NSF grants IIS-1830419 and CNS-2143312.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Dames .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xin, P., Dames, P. (2024). Distributed Multiple Hypothesis Tracker for Mobile Sensor Networks. In: Bourgeois, J., et al. Distributed Autonomous Robotic Systems. DARS 2022. Springer Proceedings in Advanced Robotics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-51497-5_22

Download citation

Publish with us

Policies and ethics