Skip to main content

Microbial Contamination in the Food Processing Environment

  • Chapter
  • First Online:
Microbial Biotechnology in the Food Industry

Abstract

Microbial contamination is an undesirable condition that occurs due to the presence of microbes, including bacteria, viruses, fungi, and parasites. However, for the purpose of this chapter, contamination refers to harmful or unwanted microbes, as some microbes are beneficial, and their presence is necessary in certain foods. Microbial food contamination can occur at any stage of the food chain, including pre- and post-harvesting, processing, packing, transportation, and distribution. In the food industry, precisely the food processing environment, microbial contamination mostly occurs due to the unintentional introduction of microorganisms such as bacteria, viruses, or other microbes. These microorganisms pose a threat to the food industry due to adverse effects on foods and the public. The most common microbial contamination in the food processing environment is the formation of biofilms. Biofilm formation is a challenge for the food industry because moisture, a critical factor for biofilm formation, is unavoidable in the food processing environment. Identification of the sources of contamination is the first step in controlling and preventing microbial contamination. Good Manufacturing Practices (GMP) and the HACCP approach have been common ways to prevent microbial contaminants in food processing. However, contamination with microorganisms continues to be an issue. For this purpose, adequate risk assessment and detection methods are essential. The food industry should not rely on traditional approaches for detecting, controlling, and preventing microbial contamination, but they should seek innovative and emerging technologies. The present chapter focuses on identifying the source of microbial contamination in food processing, detection methods, and emerging and innovative technologies for controlling microbial contamination in food processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abirami, S., Yogalsakshmi, K., Pushpa, A. S. R., & Kananan, M. (2016). Screening and identification of chitin degrading bacteria from shrimp shell waste dumping soil environment and its media optimization for chitinase enzyme production. World Journal of Pharmacy and Pharmaceutical Sciences, 5(11), 743–757.

    Google Scholar 

  • Akimowics, M., & Bucka-Kolendo, J. (2020). MALDI-TOF MS – Application in food microbiology. Acta Biochimica Polonica, 3, 327–332. https://doi.org/10.18388/abp.2020_5380

    Article  CAS  Google Scholar 

  • Aladhadh, M. (2023). A Review of Modern Methods for the Detection of Foodborne Pathogens. Microorganisms, 11(5), 1111.

    Google Scholar 

  • Al-Hindi, R. R., Alharbi, M. G., Alotibi, I., Azhari, S. A., Qadri, I., Alamri, T., Harakeh, S., Applegate, B. M., & Bhunia, A. K. (2022). Bacteriophage-based biosensors: A platform for detection of foodborne bacterial pathogens from food and environment. Biosensors, 12, 905. https://doi.org/10.3390/bios12100905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almatroudi, A., Tahir, S., Hu, H., Chowdhury, D., Gosbell, I. B., Jensen, S. O., Whiteley, G. S., Deva, A. K., Glasbey, T., & Vickery, K. (2017). Staphylococcus aureus dry-surface biofilms are more resistant to heat treatment than traditional hydrated biofilms. Journal of Hospital Infection, 98, 161–167. https://doi.org/10.1016/j.jhin.2017.09.007

    Article  PubMed  Google Scholar 

  • Alonso, V. P. P., Gonçalves, M. P. M., de Brito, F. A. E., Barboza, G. R., Rocha, L. D. O., & Silva, N. C. C. (2023). Dry surface biofilms in the food processing industry: An overview on surface characteristics, adhesion and biofilm formation, detection of biofilms, and dry sanitization methods. Comprehensive Reviews in Food Science and Food Safety, 22(1), 688–713. https://doi.org/10.1111/1541-4337.13089

  • Arias-Rios, E. V., Tenney, K., Mai, T., Anderson, S., Cantera, R. M., Pando, J. M., Selover, B., Nadala, L. M., Davidson, S. K., & Samadpour, M. (2019). Application of an environmental phage-based assay (Sample6 Detect HT/L) for the detection of Listeria spp. in ice cream. Journal of AOAC International, 102, 1132–1137.

    Article  PubMed  Google Scholar 

  • Arias-Rios, E. V., Tenney, K., Mai, T., Cantera, Selover, B., Lorr, J., Davidson, S. K., Nadala, L. M., & Samadpour, M. (2020). Application of Sample6 Detect™ HT/L kit for the detection of Listeria in mixed leafy greens. Journal of AOAC International, 103, 156–160. https://doi.org/10.5740/jaoacint.18-0238

    Article  PubMed  Google Scholar 

  • Alvarez-Ordóñez, A., Coughlan, L. M., Briandet, R., & Cotter, P. D. (2019). Biofilms in food processing environments: challenges and opportunities. Annual Review of Food Science and Technology, 10, 173–195.

    Google Scholar 

  • Bakke, M., Suzuki, S., Kirihara, E., & Mikami, S. (2019). Evaluation of the total adenylate (ATP + ADP + AMP) test for cleaning verification in healthcare settings. Journal of Preventative Medicine and Hygiene, 60(2), E140–E146. https://doi.org/10.15167/2421-4248/jpmh2019.60.2.1122

    Article  CAS  Google Scholar 

  • Banerjee, K., Pierson, B., Hu, C., Carrier, E., Malsick, L., Tarasova, Y., et al. (2018). The validation of the Sample6 DETECTTM HT/L for AOAC Research Institute. Journal of AOAC International, 101(5), 1584–1592. https://doi.org/10.5740/jaoacint.17-0484

    Article  CAS  PubMed  Google Scholar 

  • Barba, F. J., Ahrné, L., Xanthakis, E., Landerslev, M. G., & Orlien, V. (2018). Innovative technologies for food preservation. In F. J. Barba, A. S. Sant’Ana, V. Orlien, & M. Koubba (Eds.), Innovative technologies for food preservation (pp. 25–51). Academic Press. https://doi.org/10.1016/B978-0-12-811031-7.00002-9

    Chapter  Google Scholar 

  • Behrens, D., Schaefer, J., Keck, C. M., & Runkel, F. E. (2022). Application of Biofluorescent Particle Counters for Real-Time Bioburden Control in Aseptic Cleanroom Manufacturing. Applied Sciences, 12(16), 8108.

    Google Scholar 

  • Beuchat, L., Komitopoulou, E., Betts, R., Beckers, H., Bourdichon, F., Joosten, H., Fanning, S., & ter Kuile, B. (2011, November). Persistence and survival of pathogens in dry foods and dry food processing environments. Report of an ILSI Europe Expert Group.

    Google Scholar 

  • Bhagwat, V. R. (2019). Safety of water used in food production. In Food safety and human health (pp. 219–247). Academic Press. https://doi.org/10.1016/B978-0-12-816333-7.00009-6

    Chapter  Google Scholar 

  • Billington, C., Kingsbury, J. M., & Rivas, L. (2022). Metagenomics approaches for improving food safety: A review. Journal of Food Protection, 85, 448–464. https://doi.org/10.4315/JFP-21-301

    Article  CAS  PubMed  Google Scholar 

  • Blanc, D. S. (2004). The use of molecular typing for epidemiological surveillance and investigation of endemic nosocomial infections. Infection, Genetics and Evolution, 4(3), 193–197. https://doi.org/10.1016/j.meegid.2004.01.010

    Article  CAS  PubMed  Google Scholar 

  • Breuer, T. (1999). CDC investigations: The May 1998 outbreak of Salmonella Agona linked to cereal. Cereal Foods World, 44, 185–186.

    Google Scholar 

  • Brovko, L. Y., Anany, H., & Griffiths, M. W. (2012). Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment. In Advances in food and nutrition research. Elsevier. https://doi.org/10.1016/B978-0-12-394598-3.00006-X

    Chapter  Google Scholar 

  • Burfoot, D., Reavell, S., Tuck, C., & Wilkinson, D. (2003). Generation and dispersion of droplets from cleaning equipment used in the chilled food industry. Journal of Food Engineering, 58(4), 343–353.

    Google Scholar 

  • Calderon, D., Familiari, N., & Meighan, P. (2022). InSite Glo for Detection of Listeria species and Listeria monocytogenes from environmental Surfaces. AOAC Performance Tested MethodsSM certification number 121902.

    Google Scholar 

  • Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., & Raposo, A. (2021). Microbial biofilms in the food industry—A comprehensive review. International Journal of Environmental Research and Public Health, 18, 2014. https://doi.org/10.3390/ijerph18042014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention. (2010). Salmonella Montevideo infections associated with salami products made with contaminated imported back and red pepper. MMWR, 59(50), 1647–1650.

    Google Scholar 

  • Centers for Disease Control and Prevention. (2012). Multistate outbreak of human Salmonella infantis infections linked to dry dog food (Final update). https://www.cdc.gov/salmonella/dog-food-05-12/index.html#print. Accessed June 2023.

  • Centers for Disease Control and Prevention. (2021). Success stories. Available https://www.cdc.gov/pulsenet/anniversary/success-story.html. Accessed Aug 2023.

  • Centers for Disease Control and Prevention. (2022). Whole genome sequencing. Available https://www.cdc.gov/pulsenet/pathogens/wgs.html. Accessed Aug 2023.

  • Chang, L., Li, J., & Wang, L. (2016). Immuno-PCR: An ultrasensitive immunoassay for biomolecular detection. Analytica Chimica Acta, 910, 12–24. https://doi.org/10.1016/j.aca.2015.12.039

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Tang, J., Liu, J., Cai, Z., & Bai, X. (2012). Development and evaluation of a multiplex PCR for simultaneous detection of five foodborne pathogens. Journal of applied microbiology, 112(4), 823–830.

    Google Scholar 

  • Condell, O., Iversen, C., Cooney, S., Power, K. A., Walsh, C., Burgess, C., & Fanning, S. (2012). Efficacy of biocides used in the modern food industry to control Salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds. Applied and Environmental Microbiology, 78(9), 3087–3097.

    Google Scholar 

  • Dass, S. C., & Wang, R. (2022). Biofilm through the looking glass: A microbial food safety perspective. Pathogens, 11, 346. https://doi.org/10.3390/pathogens11030346

    Article  CAS  Google Scholar 

  • Dhewa, T., & Kumar, A. (2022). Management of microbiological hazards in the food processing industries. In Microbial biotechnology in Food processing and health (pp. 323–335). Apple Academic Press.

    Chapter  Google Scholar 

  • Do Prado-Silva, L., Brancini, G. T., Braga, G. Ú., Liao, X., Ding, T., & Sant’Ana, A. S. (2022). Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control, 132, 108527. https://doi.org/10.1016/j.foodcont.2021.108527

    Article  Google Scholar 

  • Doyle, M. P. (2009). Compendium of the microbiological spoilage of foods and beverages. Springer Science & Business Media.

    Google Scholar 

  • Dwivedi, H. P., Smiley, R. D., & Pincus, D. H. (2015). Rapid methods for the detection and identification of foodborne pathogens in compendium of methods for the microbiological examination of foods. APHA Press. https://doi.org/10.2105/MBEF.0222.016

  • Eaton, T., Davenport, C., & Whyte, W. (2012). Airborne microbial monitoring in an operational cleanroom using an instantaneous detection system and high-efficiency microbial samplers. European Journal of Parenteral and Pharmaceutical Sciences, 17(2), 61–69. http://www.phss.co.uk/?id=305

    Google Scholar 

  • Erdoğan, M., & Pamuk, S. (2020). Microbial contamination in food, food-handlers’ hands and surfaces and evaluation of contamination sources by the similarity between isolates. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67, 73–79.

    Article  Google Scholar 

  • Faille, C., Cunault, C., Dubois, T., & Benezech, T. (2018). Hygienic design of food processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns. Innovative Food Science & Emerging Technologies, 46, 65–73. https://doi.org/10.1016/j.ifset.2017.10.002

    Article  Google Scholar 

  • FAO. (2019). Safety and quality of water used in food production and processing – Meeting report (Microbiological risk assessment series no. 33). FAO/WHO.

    Google Scholar 

  • Farrokhzad, K., Rosenfield, C., & Applegate, B. (2015). Phage technology in high throughput screening for pathogen detection in food. In High throughput screening for food safety assessment (pp. 81–121). Woodhead Publishing. https://doi.org/10.1016/B978-0-85709-801-6.00004-6

    Chapter  Google Scholar 

  • Food and Agriculture Organization (FAO). The State of Food and Agriculture. (2019). Moving forward on food loss and waste reduction. Rome. Licence: CC BY-NC-SA 3.0 IGO. 2019. Available online: http://uni-sz.bg/truni11/wp-content/uploads/biblioteka/file/TUNI10043221.pdf

  • Food Safety and Inspection Service. (2021). Foodborne pathogen tests kits validated by Independent Organizations of U.S. Department of Agriculture. Available at https://www.fsis.usda.gov/sites/default/files/media_file/2021-04/validated-test-kit.pdf

  • Gagliardi, J. V., Millner, P. D., Lester, G., & Ingram, D. (2003). On-farm and postharvest processing sources of bacterial contamination to melon rinds. Journal of Food Protection, 66, 82–87.

    Article  CAS  PubMed  Google Scholar 

  • Galie, S., García-Guti’errez, C., Migu’elez, E. M., Villar, C. J., & Lomb’o, F. (2018). Biofilms in the food industry: Health aspects and control methods. Frontiers in Microbiology, 9, 898.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurtler, J. B., Doyle, M. P., & Kornacki, J. L. (2014). The microbiological safety of low water activity foods and spices. Springer. https://doi.org/10.1007/978-1-4939-2062-4

    Book  Google Scholar 

  • Hameed, S., Xie, L., & Ying, Y. (2018). Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends in Food Science and Technology., 81, 61–73. https://doi.org/10.1016/j.tifs.2018.05.020

    Article  CAS  Google Scholar 

  • Hewage, S. N., Makawita, M. A. P., Gibson, K. E., Lee, J., & Fraser, A. M. (2022). Relationship between ATP bioluminescence measurements and microbial assessments in studies conducted in food establishments: A systematic literature review and meta-analysis. Journal of Food Protection, 85, 1855–1864. https://doi.org/10.4315/JFP-22-187

    Article  CAS  PubMed  Google Scholar 

  • Hill, A. E. (2015). Brewing microbiology. Managing microbes, ensuring quality and valorising waste (p. 513). Woodhead Publishing.

    Google Scholar 

  • Hinkley, T. C., Garing, S., Singh, S., Le Ny, A.-L. M., Nichols, K. P., Peters, J. E., Talbert, J. N., & Nugen, S. R. (2018). Reporter bacteriophage T7 NLC utilizes a novel NanoLuc: CBM fusion for the ultrasensitive detection of Escherichia coli in water. The Analyst, 143, 4074–4082. https://doi.org/10.1039/C8AN00781K

    Article  CAS  PubMed  Google Scholar 

  • Hodzic, E., Glavinic, A., & Wademan, C. (2023). A novel approach for simultaneous detection of the most common food-borne pathogens by multiplex qPCR. Biomolecules and Biomedicine, 640–648.

    Google Scholar 

  • Hua, Z., Korany, A. M., El-Shinawy, S. H., & Zhu, M. J. (2019). Comparative evaluation of different sanitizers against Listeria monocytogenes biofilms on major food-contact surfaces. Frontiers in Microbiology, 10, 2462.

    Google Scholar 

  • Imanian, B., Donaghy, J., Jackson, T., Gummalla, S., Ganesan, B., Baker, R. C., et al. (2022). The power, potential, benefits, and challenges of implementing high-throughput sequencing in food safety systems. npj Science of Food, 6(1), 35. https://doi.org/10.1038/s41538-022-00150-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Janagama, H., Mai, T., Han, S., Nadala, L. M., Nadala, C., & Samadpour, M. (2018). Dipstick assay for rapid detection of beer spoilage organisms. Journal of AOAC International, 101(6), 1913–1919. https://doi.org/10.5740/jaoacint.17-0479

    Article  CAS  PubMed  Google Scholar 

  • Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). Chemical, biological, and physical methods. In Modern food microbiology (pp. 241–284). Springer.

    Google Scholar 

  • Karatzas, K. A., Webber, M. A., Jorgensen, F., Woodward, M. J., Piddock, L. J., & Humphrey, T. J. (2007). Prolonged treatment of Salmonella enterica serovar Typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. Journal of Antimicrobial Chemotherapy, 60(5), 947–955. https://doi.org/10.1093/jac/dkm314

    Article  CAS  PubMed  Google Scholar 

  • Keer, J. T., & Birch, L. (2003). Molecular methods for the assessment of bacterial viability. Journal of Microbiological Methods, 53(2), 175–183. https://doi.org/10.1016/S0167-7012(03)00025-3

    Article  CAS  PubMed  Google Scholar 

  • Khansili, N., Rattu, G., & Krishna, P. M. (2018). Label-free optical biosensors for food and biological sensor applications. Sensors and Actuators B: Chemical, 265, 35–49. https://doi.org/10.1016/j.snb.2018.03.004

    Article  CAS  Google Scholar 

  • King, H., & Bedale, W. (2017). Hazard analysis and risk-based preventive controls: Improving food safety in human food manufacturing for food businesses. Academic Press.

    Google Scholar 

  • Konstantinou, G. N. (2017). Enzyme-linked immunosorbent assay (ELISA). In Food allergens: Methods and protocols (pp. 79–94). Springer.

    Chapter  Google Scholar 

  • Laube, T., Cortés, P., Llagostera, M., Alegret, S., & Pividori, M. I. (2014). Phagomagnetic immunoassay for the rapid detection of Salmonella. Applied Microbiology and Biotechnology., 98, 1795–1805.

    Article  CAS  PubMed  Google Scholar 

  • Law, J. W. F., Ab Mutalib, N. S., Chan, K. G., & Lee, L. H. (2015). Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 5, 770. https://doi.org/10.3389/fmicb.2014.00770

    Article  PubMed  PubMed Central  Google Scholar 

  • Lelieveld, H. L. M., Mostert, M. A., & Curiel, G. J. (2014). Hygienic design of food processing equipment. In Hygiene in food processing (pp. 91–141). Woodhead Publishing. https://doi.org/10.1533/9780857098634.2.91

    Chapter  Google Scholar 

  • Li, G., Nie, X., Chen, J., Jiang, Q., An, T., Wong, P. K., ... & Yamashita, H. (2015). Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Research, 86, 17–24.

    Google Scholar 

  • Lopes, A. T. S., & Maciel, B. M. (2019). Real-time quantitative PCR as a tool for monitoring microbiological quality of food. In Synthetic Biology-New Interdisciplinary Science. IntechOpen.

    Google Scholar 

  • Martins de Aquino, N. S., Olivera Elias, S., Alves Gomes, L. V., & Tondo, E. C. (2021). Phage-based assay for the detection of salmonella in Brazilian poultry products. Journal of Food Science and Nutrition Research, 4(2021), 249–258.

    Google Scholar 

  • Matushek, M. G., Bonten, M. J., & Hayden, M. K. (1996). Rapid preparation of bacterial DNA for pulsed-field gel electrophoresis. Journal of Clinical Microbiology, 34(10), 2598–2600. https://doi.org/10.1128/jcm.34.10.2598-2600.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntyre, L., Wilcott, L., & Naus, M. (2015). Listeriosis outbreaks in British Columbia, Canada, caused by soft ripened cheese contaminated from environmental sources. BioMed Research International, Article ID: 131623: 1–12.

    Google Scholar 

  • Morales-de la Peña, M., Welti-Chanes, J., & Martín-Belloso, O. (2018). Novel technologies to improve food safety and quality. Current Opinion in Food Science, 2214–7993. https://doi.org/10.1016/j.cofs.2018.10.009

  • Murray, K., Wu, F., Shi, J., Jun Xue, S., & Warriner, K. (2017). Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions. Food Quality and Safety, 1(4), 289–301. https://doi.org/10.1093/fqsafe/fyx027

    Article  CAS  Google Scholar 

  • Nguyen, M. M., Gil, J., Brown, M., Tondo, E. C., Martins de Aquino, N. S., Eisenberg, M., & Erickson, S. (2020). Accurate and sensitive detection of salmonella in foods by engineered bacteriophages. Nature Research, 10, 17463. https://doi.org/10.1038/s41598-020-74587-8

    Article  CAS  Google Scholar 

  • Nnachi, R. C., Sui, N., Ke, B., Luo, Z., Bhalla, N., He, D., & Yang, Z. (2022). Biosensors for rapid detection of bacterial pathogens in water, food and environment. Environment International, 166(107357), 1–20. https://doi.org/10.1016/j.envint.2022.107357

    Article  CAS  Google Scholar 

  • Nocker, A., & Camper, A. K. (2006). Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Applied and Environmental Microbiology, 72, 1997–2004. https://doi.org/10.1128/AEM.72.3.1997-2004.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuchchanart, W., Pikoolkhao, P., & Saengthongpinit, C. (2023). Development of a lateral flow dipstick test for the detection of 4 strains of Salmonella spp. in animal products and animal production environmental samples based on loop-mediated isothermal amplification. Animal Bioscience, 36(4), 654.

    Google Scholar 

  • Odeyemi, O. A., Alegbeleye, O. O., Strateva, M., & Stratev, D. (2020). Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety, 19(2), 311–331. https://doi.org/10.1111/1541-4337.12526

    Article  PubMed  Google Scholar 

  • Oliveira, M., Tiwari, B. K., & Duffy, G. (2020). Emerging technologies for aerial decontamination of food storage environments to eliminate microbial cross-contamination. Food, 9(12), 1779. https://doi.org/10.3390/foods9121779

    Article  CAS  Google Scholar 

  • Omidbakhsh, N., Ahmadpour, F., & Kenny, N. (2014). How reliable are ATP bioluminescence meters in assessing decontamination of environmental surfaces in healthcare settings? PLoS One, 9(6), e99951.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavlovic, M., Huber, I., Konrad, R., & Busch, U. (2013). Application of MALDI-TOF MS for the identification of food borne bacteria. The Open Microbiology Journal, 7, 135–141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxson, H. (2019). “Don’t pack a pest”: Parts, wholes, and the porosity of food borders. Food, Culture & Society, 22(5), 657–673. https://doi.org/10.1080/15528014.2019.1638136

    Article  Google Scholar 

  • Pellissery, A. J., Vinayamohan, P. G., Amalaradjou, M. A. R., & Venkitanarayanan, K. (2020). Spoilage bacteria and meat quality. In A. B. Bisawas & P. K. Mandal (Eds.), Meat quality analysis. Academic Press. isbn:978-0-12-819233-7.

    Google Scholar 

  • Podolak, R., Enache, E., Stone, W., Black, D. G., & Elliott, P. H. (2010). Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. Journal of Food Protection, 73(10), 1919–1936.

    Google Scholar 

  • Potortì, A. G., Tropea, A., Lo Turco, V., Pellizzeri, V., Belfita, A., Dugo, G., & Di Bella, G. (2020). Mycotoxins in spices and culinary herbs from Italy and Tunisia. Natural Product Research, 34(1), 167–171. https://doi.org/10.1080/14786419.2019.1598995

    Article  CAS  PubMed  Google Scholar 

  • Prevost, S., André, S., & Remize, F. (2010). PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage. Current Microbiology, 61(6), 525–533.

    Google Scholar 

  • Rahman, M. A., Amirkhani, A., Parvin, F., Chowdhury, D., Molloy, M. P., Deva, A. K., et al. (2022). One step forward with dry surface biofilm (DSB) of Staphylococcus aureus: TMT-based quantitative proteomic Analysis reveals proteomic shifts between DSB and hydrated biofilm. International Journal of Molecular Sciences, 23(20), 12238. https://doi.org/10.3390/ijms232012238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reboud, J., Xu, G., Garrett, A., Adriko, M., Yang, Z., Tukahebwa, E. M., ... & Cooper, J. M. (2019). based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proceedings of the National Academy of Sciences, 116(11), 4834–4842.

    Google Scholar 

  • Refaat, A. (2011). Biodiesel production using solid metal oxide catalysts. International Journal of Environmental Science & Technology, 8(1), 203–221.

    Article  CAS  Google Scholar 

  • Reij, M. W., Den Aantrekker, E. D., & ILSI Europe Risk Analysis in Microbiology Task Force. (2004). Recontamination as a source of pathogens in processed foods. International Journal of Food Microbiology, 91(1), 1–11. https://doi.org/10.1016/S0168-1605(03)00295-2

    Article  CAS  PubMed  Google Scholar 

  • Roobab, U., Aadil, R. M., Madni, G. M., & Bekhit, A. E. (2018). The impact of nonthermal technologies on the microbiological quality of juices: A review. Comprehensive Reviews in Food Science and Food Safety, 17, 437–457. https://doi.org/10.1111/1541-4337.12336

    Article  PubMed  Google Scholar 

  • Rossi, C., Chaves-L’opez, C., Serio, A., Casaccia, M., Maggio, F., & Paparella, A. (2020). Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Critical Reviews in Food Science and Nutrition, 62, 1–20.

    Google Scholar 

  • Shama, G., & Malik, D. J. (2013). The uses and abuses of rapid bioluminescence-based ATP assays. International Journal of Hygiene and Environmental Health, 216(2), 115–125.

    Google Scholar 

  • Shi, X., & Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science & Technology, 20(9), 407–413. https://doi.org/10.1016/j.tifs.2009.01.054

    Article  CAS  Google Scholar 

  • Siegrist, J., Kohlstock, M., Merx, K., & Vetter, K. (2015). Rapid detection and identification of spoilage bacteria in beer. In Brewing microbiology (pp. 287–318). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-331-7.00014-9

    Chapter  Google Scholar 

  • Sotir, M. J., Ewald, G., Kimura, A. C., Higa, J. I., Sheth, A., Troppy, S., et al. (2009). Outbreak of Salmonella Wandsworth and Typhimurium infections in infants and toddlers traced to a commercial vegetable-coated snack food. The Pediatric Infectious Disease Journal, 28(12), 1041–1046.

    Article  PubMed  Google Scholar 

  • Soumet, C., Fourreau, E., Legrandois, P., & Maris, P. (2012). Resistance to phenicol compounds following adaptation to quaternary ammonium compounds in Escherichia coli. Veterinary Microbiology, 158(1–2), 147–152.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, K. (2020). Emergence of new spoilage microorganisms in the brewing industry and development of microbiological quality control methods to cope with this phenomenon – A review. Journal of the American Society of Brewing Chemists. https://doi.org/10.1080/03610470.2020.1782101

  • Teixeira, P., Alvarez-Ordóñez, A., & Nevárez-Moorillón, G. V. (2021). Microbiological risks in food processing. Frontiers in Sustainable Food Systems, 4, 630598. https://doi.org/10.3389/fsufs.2020.630598

    Article  Google Scholar 

  • Todd, E. (2020). Food-borne disease prevention and risk assessment. International Journal of Environmental Research and Public Health, 17, 5129. https://doi.org/10.3390/ijerph17145129

    Article  PubMed  PubMed Central  Google Scholar 

  • Todd, E. C., Greig, J. D., Bartleson, C. A., & Michaels, B. S. (2007). Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 3. Factors contributing to outbreaks and description of outbreak categories. Journal of Food Protection, 70(9), 2199–2217. https://doi.org/10.4315/0362-028X-70.9.2199

    Article  PubMed  Google Scholar 

  • Tropea, A. (2022). Microbial contamination and public health: An overview. International Journal of Environmental Research and Public Health, 19(12), 7441. https://doi.org/10.3390/ijerph19127441

    Article  PubMed  PubMed Central  Google Scholar 

  • U.S. Food and Drug Administration. (2008). Guidance for industry: Guide to minimize microbial food safety hazards of fresh-cut fruits and vegetables. Available https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-guide-minimize-microbial-food-safety-hazards-fresh-cut-fruits-and-vegetables. Accessed on June 2023.

  • U.S. Food and Drug Administration. (2013). FDA draft risk profile: Pathogens and filth in spices. Accessible at https://www.fda.gov/files/food/published/Risk-Profile%2D%2DPathogens-and-Filth-in-Spices.pdf

  • U.S. Food and Drug Administration. (2020). Outbreak investigation of Salmonella javiana fruit mix (December 2019). Available https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-salmonella-javiana-fruit-mix-december-2019. Accessed on Aug 2023.

  • U.S. Food and Drug Administration. (2021). Outbreak investigation of Listeria monocytogenes: Dole packed salad (December 2021). Available https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-listeria-monocytogenes-dole-packaged-salad-december-2021. Accessed on Aug 2023.

  • Välimaa, A. L., Tilsala-Timisjärvi, A., & Virtanen, E. (2015). Rapid detection and identification methods for Listeria monocytogenes in the food chain – A review. Food Control, 55, 103–114. https://doi.org/10.1016/j.foodcont.2015.02.037

    Article  CAS  Google Scholar 

  • van Arkel, A., Willemsen, I., & Kluytmans, J. (2021). The correlation between ATP measurement and microbial contamination of inanimate surfaces. Antimicrobial Resistance & Infection Control, 10, 1–5. https://doi.org/10.1186/s13756-021-00981-0

    Article  Google Scholar 

  • Weatherill, S. (2009). Report of the independent investigator into the 2008 Listeriosis outbreak. In Listeriosis investigative review (pp. 1–156). Agriculture and Agri-Food. Available https://www.cmc-cvc.com/sites/default/files/files/ListeriaIndependentInvestigatorReport_July212009.pdf

    Google Scholar 

  • Weber, J., Hauschild, J., Ijzerman-Boon, P., Forng, R. Y., Horsch, J., Yan, L., et al. (2019). Continuous microbiological environmental monitoring for process understanding and reduced interventions in aseptic manufacturing. PDA Journal of Pharmaceutical Science and Technology, 73(2), 121–134. https://doi.org/10.5731/pdajpst.2018.008722

    Article  PubMed  Google Scholar 

  • Zhang, D., Coronel-Aguilera, C. P., Romero, P. L., Perry, L., Minocha, U., Rosenfield, C., et al. (2016). The use of a novel NanoLuc-based reporter phage for the detection of Escherichia coli O157: H7. Scientific Reports, 6(1), 33235. https://doi.org/10.1038/srep33235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, X., Lin, C. W., Wang, J., & Oh, D. W. (2014). Advances in rapid detection methods for foodborne pathogens. Journal of Microbiology and Biotechnology, 24, 297–312.

    Google Scholar 

  • Zhao, L., She, Z., Jin, C., Yang, S., Guo, L., Zhao, Y., & Gao, M. (2016). Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress. Bioprocess and Biosystems Engineering, 39, 1375–1389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammad, Z.H., Arias-Rios, E.V., Ahmad, F., Juneja, V.K. (2024). Microbial Contamination in the Food Processing Environment. In: Ahmad, F., Mohammad, Z.H., Ibrahim, S.A., Zaidi, S. (eds) Microbial Biotechnology in the Food Industry. Springer, Cham. https://doi.org/10.1007/978-3-031-51417-3_2

Download citation

Publish with us

Policies and ethics