Skip to main content

Surface Treatments and Temperature Effects

  • Chapter
  • First Online:
Fatigue and Corrosion in Metals
  • 174 Accesses

Abstract

The role that the external surface exerts on the fatigue strength of materials will never be stressed enough. In high cycle fatigue and to a less extent also in low-cycle fatigue, the first and most effective barrier to the demolishing action of cyclic loads is provided by the surface. A really well-treated surface will make a workpiece last fatigue as expected while an inaccurate and odd surface will lead to an early as well unexpected fatigue failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Houdremont, E., Mailänder, R.: Bending fatigue tests on steels. Stähl and Eisen 49, 833–892 (1929)

    Google Scholar 

  2. Föppl, O.: Sthal u. Eisen 49, 775 (1929)

    Google Scholar 

  3. Thum, A.: Die Entlwickung der Lehre von der Gestaltfestigkeit. Z. VDI 77, 1337 (1933)

    Google Scholar 

  4. Thum, A., Ochs, O.: Z. VDI 76, 951 (1932)

    Google Scholar 

  5. Horger, O.J.: Effect of surface rolling on the fatigue strength of steel. J. Appl. Mech. 57, A-128 (1935)

    Google Scholar 

  6. Lyst, J.O.: The Effect of Residual Strain upon the Rotating Beam Fatigue Properties of Same Aluminum Alloys, Technical report No. 9-60-34, Alcoa, Pittsburgh (1960)

    Google Scholar 

  7. Fuchs, H.O., Stephens, R.I.: Metal Fatigue in Engineering. Wiley, New York (1980)

    Google Scholar 

  8. Heydekampf, G.S.V.: The Iron Age, vol. 775 (1930)

    Google Scholar 

  9. Fahrenhorst, W., Sachs, G.: Metallwirtsch 10, 738–880 (1931)

    Google Scholar 

  10. Almen, J.O., Black, P.H.: Residual Stresses and Fatigue in Metals. McGraw-Hill, New York (1963)

    Google Scholar 

  11. Prevéy, P.S., Jayaraman, N.: Overview of Low Plasticity Burnishing for Mitigation of Fatigue Damage Mechanisms, Dr. John Cammett, Proceedings of ICSP 9 (Paper 260) Paris, Marne la Vallee, France, Sept. 6–9 (2005)

    Google Scholar 

  12. Kloos, K.H., Fuchsbauer, B., Adelmann, J.: Fatigue properties of specimens similar to components deep rolled under optimized conditions. Int. J. Fatig. 9, 35–42 (1987)

    Article  Google Scholar 

  13. Berstain, G., Fuchsbauer, B.: Z. Werkstofftech 14, 103 (1982)

    Article  Google Scholar 

  14. Franz, H.E.: X-ray measurements of residual stresses after surface machining of Ti6Al4V and Ti6Al6V2Sn (in German). VereinDeutscherIngenieure, Dusseldorf, VDI, Berichte 313, 453–462 (1978)

    Google Scholar 

  15. Nelson, D.V., Ricklefs, R.V., Evans, W.P.: The role of residual stresses in increasing long life fatigue strength of notched machine members, achievements of high fatigue resistance in metals and alloys. ASTM STP 467, 228–253 (1970)

    Google Scholar 

  16. Fatigue Design Handbook, AE-10, 2nd edn., vol. 78. Society of Automotive Engineers, Inc. (1988)

    Google Scholar 

  17. Zimmerly, F.P.: Mach. Des. 12, 62 (1940)

    Google Scholar 

  18. Maker, J.H.: Failure Analysis and Prevention, ASM Handbook, Vol. 11. Fatigue of Springs (2002)

    Google Scholar 

  19. Almen, J.O., Black, P.H.: Residual Stresses and Fatigue in Metals. McGraw-Hill Book Co. (1963)

    Google Scholar 

  20. Fatigue Design Handbook, AE-10, 2nd edn., vol. 77. Society of Automotive Engineers, Inc. (1988)

    Google Scholar 

  21. Niku-Lari, A.: An Overview of Shot-Peening, International Conference on Shot Peening and Blast Cleaning

    Google Scholar 

  22. Heibach, E.: FKM-Guideline: Analytical Strength Assessment of Components in Mechanical Engineering, 5th Rev. edn., Frankfurt (2003)

    Google Scholar 

  23. Adamaszek, K., Broz, P.: Decarburization and hardness changes in carbon steels caused by high temperature surface oxidationin ambient air. Diffus. Defect Data: Defect Diffus. Forum 144, 1701–1076 (2001)

    Article  Google Scholar 

  24. Cazaux, R., Persoz, L.: La Fatigue de Métaux. Dunod, Paris (1937)

    Google Scholar 

  25. Hattingh, D.G.: The Fatigue Properties of Spring Steel, PHD Thesis, University of Plymouth, March (1998)

    Google Scholar 

  26. Goto, M.: Statistical investigation of the behaviour of microcracks in carbon steels. Fatigue Fract. Eng. Mater. Struct. 14(8), 835 (1991)

    Google Scholar 

  27. Cazaux, R.: Fatigue of Metals. Chapman and Hall, London (1953)

    Google Scholar 

  28. Krauss, G.: Martensitic transformation, structure and properties in hardenable steels. In: Doane, D.V., Kirkaldy, J.S. (eds.) Hardenability Concepts with applications to Steels. AIME Warrendale, PA, 229–248 (1978)

    Google Scholar 

  29. Shimizu, T., Enomoto, K., Araki, S., Ikegami, T.: Induction heating stress improvement for welded pipes and its effectiveness. In: EPRI Seminar on Countermeasures for BWR Pipe Cracking, Vol. O, Session 3, January 22–24 (1980)

    Google Scholar 

  30. Tanaka, S., Umemoto, T.: Residual Stress Improvement by Means of Induction Heating, Ibidem, Vol. O, Session 3, January 22–24 (1980)

    Google Scholar 

  31. Futami, T., Matsumoto, T., Iwasaki, S., Umemoto, T.: IHSI Implementation to Actual Plants, Ibidem, Vol. O, Session 7, January 22–24 (1980)

    Google Scholar 

  32. Chrenko, R. M.: Residual Stress Measurements on Type 304 Stainless Steel Weld Pipes, Ibidem, Vol. O, Session 4, January 22–24 (1980); Van Wiggen, P.C., Rozendaal, H.C.F., Mittemeijer, E.J.: The nitriding behaviour of iron-chromium-carbon alloys. J. Mater. Sci. 20, 4561–4582 (1985)

    Google Scholar 

  33. Costa, J.D., Ferreira, J.M., Ramalho, A.L.: Fatigue and fretting fatigue of ion-nitrided 34NiMo6 steel. Theor. Allied Fract. Mechan. 35, 69–79 (2001)

    Article  Google Scholar 

  34. Slámečka, K., Pokluda, J., Kianiková, M.: Fractographically-aided analysis of fish-eye crack growth in nitrided steel. J. Appl. Theor. Mechan. 51(2), 439–446 (2013)

    Google Scholar 

  35. Osgood, C.C.: Fatigue Design, 2nd edn. Pergamon Press, Oxford (1982)

    Google Scholar 

  36. Brock, G.W., Sinclair, G.M.: Elevated temperature tensile and fatigue behaviour of unalloyed arc-cast molybdenum. Proc. ASTM 60 (1960)

    Google Scholar 

  37. McCammon, R.D., Rosemberg, H.M.: The fatigue and ultimate tensile strength of metals between 42 and 393 K. Proc. R. Soc. A 242, 203 (1957)

    Google Scholar 

  38. Allen, N.P., Forrest, P.G.: International Conference on Fatigue. Institution of Mechanical Engineers, vol. 237 (1956)

    Google Scholar 

  39. Forrest, P.G.: Metal Fatigue. Chapman and Hall, London (1959)

    Google Scholar 

  40. Schwartzberg, F.R., Keys, R.D., Brown, M.J., Reightler, C.L., Martin-Marietta Corp., Rep. NASA-CR, 63-29 (1963)

    Google Scholar 

  41. Betteridge, W.: The Nimonic Alloys. Edward Arnold, London (1959)

    Google Scholar 

  42. Hempel, M., Tillmann, H.E.: Wechselzugversuche bei Holen Temperaturen. Max-Plank Inst., Eisenforschun, vol. 163 (1936)

    Google Scholar 

  43. Environmentally Assisted Cracking in Light-Water Reactors, NUREG/CR-4667, vol. 22, Prepared by O.K. Chopra et al., Semi-annual Report, January 1996–June 1996

    Google Scholar 

  44. Keh, A.S., Nakada, J., Leslie, W.C.: Dynamic Strain Aging in Iron and Steel, Dislocations Dynamics, pp. 381–408. A.R. Rosenfield and others, McGrow-Hill (1968)

    Google Scholar 

  45. Carreker, R.P., Jr.: Tensile deformation of silver as a function of temperature, strain rate, and grain size. Trans. AIME 209, 112 (1957)

    Google Scholar 

  46. Loss, J.F. (ed.): Structural Integrity of Water Reactor Pressure Boundary Components, US NRC, NUREG/CR-3228, vol. 4, Annual Report (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milella, P.P. (2024). Surface Treatments and Temperature Effects. In: Fatigue and Corrosion in Metals. Springer, Cham. https://doi.org/10.1007/978-3-031-51350-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51350-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51349-7

  • Online ISBN: 978-3-031-51350-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics