Skip to main content

Morphological Aspects of Fatigue. Crack Formation and Growth

  • Chapter
  • First Online:
Fatigue and Corrosion in Metals
  • 172 Accesses

Abstract

The purpose of this chapter is to provide some basic information about the morphological aspects associated with the various fatigue processes that take place in materials during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neumann, P.: Bildung und Ausbreitung von Rissen bei der Wechselverformung. Zaitschrift f. Metallkunde H 11, 780–789 (1967)

    Google Scholar 

  2. Forsyth, P.J.E.: In: International Conference on Fatigue. pp. 535. Institution of Mechanical Engineers (1956)

    Google Scholar 

  3. Forsyth, P.J.E., Stubbington, C.A.: The slip band extrusion effect observed in some aluminum alloys subjected to cyclic stress. Nature London 175, 767 (1955)

    Article  Google Scholar 

  4. Forsyth, P.J.E.: Some observation on the nature of fatigue damage, Phil. Mag. 2, 437 (1957)

    Google Scholar 

  5. Forsyth, P.J.E.: Proceedings of Royal Society, A242, 198 (1957)

    Google Scholar 

  6. Stubbington, C.A., Forsyth, P.J.E.: Slip band extension effect observed in copper. J. Instit. Metals 86, 90 (1957–58)

    Google Scholar 

  7. Klesnil, M., Lukáš, P.J.: Iron and Steel Institute 203, 1043 (1965)

    Google Scholar 

  8. Cina, B.J.: Iron and Steel Institute 194, 324 (1960)

    Google Scholar 

  9. Cottrell, A.H., Hull, D.: Extrusions and Intrusions by cyclic slip in copper. Proc. of Royal Soc. A242, 211–213 (1957)

    Google Scholar 

  10. Mott, N.T.: A theory of the origin of fatigue cracks. Acta Metall. 6, 195–197 (1958)

    Article  Google Scholar 

  11. Boettner, R.C., McEvily, A.J., Liu, Y.C.: Phil. Mag. 10, 95 (1964)

    Article  Google Scholar 

  12. Beachem, C.D.: Interpretation of electron fractographs, NLR Report 6330, Naval Research Laboratory, Washington D.C., pp. 49. (1966)

    Google Scholar 

  13. Yokobori, T., Kawasaki, T., Nakanishi, S., Kawaghishi, M.: Some experiments on heavy section specimen under low-cycle fatigue testing. Metal Sci. J. 5(1), 25–33 (1969)

    Google Scholar 

  14. Metals Handbook.: In: Failure Analysis and Prevention. vol. 11, 8th edn, ASM, pp. 102. (1975)

    Google Scholar 

  15. Rice, R.C., Rungta, R.: Fatigue analysis of a rail subjected to controlled service conditions. Fatigue Fract. Eng. Mater. Struct. 10(3), 213–221 (1987)

    Article  Google Scholar 

  16. Schijve, J.: In: Fatigue of Structures and Materials. pp. 36. Kluwer Academic Publisher (2004)

    Google Scholar 

  17. Metals Handbook.: Fractography. vol. 12, 9th edn. ASM, pp. 483. (1987)

    Google Scholar 

  18. Gerberich, W.: Microstructure and fracture, mechanical testing. In: Metals Handbook, vol. 8, 9th edn, ASM, pp. 476–491. (1985)

    Google Scholar 

  19. Clavel, M., Pineau, A.: Frequency and waveform effects on the fatigue crack growth behaviour of alloy 718 at 298 K and 283 K. Metallurgical Trans. A, 9, 471–480 (1978)

    Google Scholar 

  20. Lund, R.A, Sheybany, S.: Fatigue fracture appearances in ASM metals handbook. In: Failure Analysis and Prevention, vol. 11, 8th edn. ASM, 102 (1975)

    Google Scholar 

  21. Forsyth, P.J.E.: Fatigue damage and crack growth in aluminum alloys. Acta Metallurgica 11, 713 (1963)

    Google Scholar 

  22. Liaw, P.K., Saxena, A., Schaffer, J.: Creep crack growth behavior of steam pipe steels: effects of inclusion content and primary creep. Eng. Fract. Mech. 57(1) 112 (1997)

    Google Scholar 

  23. Mills, W.J., James, L.A.: Effect of temperature on the fatigue crack propagation behaviour of inconel X-750. Fatigue of Eng. Mater. Struct. 3, 172 (1980)

    Article  Google Scholar 

  24. Thompson, N., Wadsworth, N.J.: Metal fatigue. Adv. Phys. 7(25), 72 (1958)

    Google Scholar 

  25. Nine, H.D., Kuhlmann-Wilsdorf, D.: Fatigue in copper single crystals in a new model of fatigue in face-centered-cubic metals. Canad. J. Phys. 45(2), Part III, 865 (1967)

    Google Scholar 

  26. Schijve, J.: In: Fatigue of Structures and Materials. pp. 30. Kluwer Academic Publisher (2004)

    Google Scholar 

  27. McEvily, A.J., Johnston, T.L.: In: International Conference on Fracture, Sendai, Japan (1965)

    Google Scholar 

  28. Laird, C.: The influence of metallurgical structures on the mechanism of fatigue crack propagation. FORD Scientific Laboratory, Dearborn, Michigan, May 5 (1966)

    Google Scholar 

  29. Forsyth, P.J.E: Fatigue damage and crack growth in aluminum alloys. Acta Metallurgica 11, 708 (1963)

    Google Scholar 

  30. Grinberg, N.M.: Int. J. Fract. 3, 143 (1981) and 6, 143–148 (1984)

    Google Scholar 

  31. Beachem, C.D.: Microscopic fracture processes. In: Liebowitz, H. (ed) Fracture an Advanced Treatise, I, vol. 311, (1968); Trans. ASM, 60, 324 (1967)

    Google Scholar 

  32. Gross, T.S.: Micro mechanisms of monotonic and cyclic crack growth. In: Metals Handbook, vol. 19, Fatigue and Fracture, ASM (1998)

    Google Scholar 

  33. Beachem, C.D., Pelloux, M.N.: electron fractography—a tool for the study of micromechanisms of fracturing processes. In: 67th ASTM Symposium, STP-381, 236–237, June (1964)

    Google Scholar 

  34. Forsyth, P.J.E., Stubbington, G.A., Clark, D.: J. Instit. Metals 90 (1961)

    Google Scholar 

  35. Beachem.: Trans. AMS 60, 325 (1967)

    Google Scholar 

  36. Becker, W.: Closed-form modelling of the unloaded mode I dugdale crack. Eng. Fract. Mech. 57(4), 355–364 (1997)

    Article  Google Scholar 

  37. Nelson, H.G.: Hydrogen embrittlement. In: Treatise on Materials Science and Technology, vol. 25, pp. 331. Academic Press (1983)

    Google Scholar 

  38. Forsyth, P.J.E., Ryder, D.A.: Some results of the examination of aluminum alloy specimen fracture surfaces. Metallurgia 63, 117–124 (1961)

    Google Scholar 

  39. Pelloux, R.M.N., Faral, M., McGee, W.M.: Fractographic measurements of crack-tip closure. ASTM-STP 700, 35–48 (1980)

    Google Scholar 

  40. Srivatsan, T.S., Shiram, S., Daniels, C.: Influence of temperature on cyclic stress response and fracture behavior of aluminum alloy 6061. Eng. Fract. Mech. 56(4), 536 (1997)

    Google Scholar 

  41. Pelloux, R.M.N.: Corrosion fatigue crack propagation. In: II International Conference on Fracture, Brighton, Session V, Paper 64 (1969)

    Google Scholar 

  42. Pelloux, R.M.N.: Mechanisms of formation of striations. Trans. ASM 62, 281–284 (1969)

    Google Scholar 

  43. Wadsworth, N.J., Hutchings, J.: Phil. Mag. 3, 1154 (1958)

    Article  Google Scholar 

  44. McClintoc, F.A., Pelloux, R.M.N.: Crack extension by alternating shear. Boeing Scientific Research Laboratories, D-1, July (1968)

    Google Scholar 

  45. Leger, J.: Fatigue life testing of crane drive shaft under crane-typical torsional and rotary bending loads. Schenck Hydropuls Magazine, Issue 1(89), 8–11 (1989)

    Google Scholar 

  46. Metals Handbook.: Failure Analysis and Prevention, vol. 10, 8th edn. ASM, 97 (1975)

    Google Scholar 

  47. Metals Handbook.: Failure Analysis and Prevention, vol. 10, 8th edn. ASM, 100 (1975)

    Google Scholar 

  48. Metals Handbook.: Failure Analysis and Prevention. vol. 10, 8th edn. ASM, 275 (1975)

    Google Scholar 

  49. Frost, N.E., Marsh, K.J., Pook, L.P.: Metal Fatigue. Clarendon, Oxford (1974)

    Google Scholar 

  50. Hatchings, F.R., Unterweiser, P.M. (Ed.): Fatigue failure of diesel engine crankshaft, from Failure Analysis, the British Engine Technical Reports, ASM (1981)

    Google Scholar 

  51. Metals Handbook.: Fractography, Atlas of Fractographs, vol. 12, 9th edn. ASM, 97 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milella, P.P. (2024). Morphological Aspects of Fatigue. Crack Formation and Growth. In: Fatigue and Corrosion in Metals. Springer, Cham. https://doi.org/10.1007/978-3-031-51350-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51350-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51349-7

  • Online ISBN: 978-3-031-51350-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics