Skip to main content

Fracture Mechanics Approach to Stress Corrosion

  • Chapter
  • First Online:
Fatigue and Corrosion in Metals
  • 132 Accesses

Abstract

Stress corrosion cracking (SCC) is used as a generic term to describe any behavior in which a combination of a static load and an aggressive environment results in the generation and propagation of a crack by corrosion. Stress corrosion has been treated from the electrochemical point of view in Chap. 17 and with a chemical-metallurgical approach in Chap. 18 for the important cases of hydrogen embrittlement and sensitization embrittlement of metals. We shall now study SCC from a mechanical point of view showing how fracture mechanics, in particular, originally developed to treat brittle fracture of World War II ships and later used in the treatment of fatigue crack propagation (see Chap. 10) can be also applied to treat the mysterious world of stress corrosion. It has been said in Sect. 17 that the study of corrosion had evidenced the fundamental role played by the combination of a specific material with a specific environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steigerwald, E.A.: Delayed failure of high-strength steel in liquid environment. Proc. ASTM 60, 750–760 (1960)

    Google Scholar 

  2. Laycock, N.J., Newmann, R.C.: Corros. Sci.. Sci. 39, 1771 (1997)

    Article  Google Scholar 

  3. Compton, K.G., Mendizza, A., Bradley, W.W.: Atmospheric galvanic couple corrosion. Corrosion II, 383 (1955)

    Google Scholar 

  4. Chen, G.S., Liao, C.M., Wan, K.C., Gao, M., Wei, R.P.: Pitting corrosion and fatigue crack nucleation. Am. Soc. Test. Mater., ASTM STP 1298, 18–33 (1997)

    Google Scholar 

  5. Weiderhorn, S.: Moisture assisted crack growth in ceramics. Inten. J. Fracture Mecganics 4(2), 171 (1968)

    Article  Google Scholar 

  6. Novak, S.R., Rolfe, S.T.: Comparison of fracture mechanics and nominal stress analysis in stress corrosion cracking. Corrosion 26(4), 121–130 (1970)

    Article  Google Scholar 

  7. Carter, C.S.: The effect of silicon on stress corrosion resistance of low-alloy high-strength steels. Corrosion 25, 423–431 (1969)

    Article  Google Scholar 

  8. Smith, H.R., Piper, D.E., Downey, F.K.: A study of stress corrosion cracking by wedge-force loading. Eng. Fract. Mech.Fract. Mech. 1, 123–128 (1968)

    Article  Google Scholar 

  9. Johnson, H.H., Willner, A.M.: Moisture and stable crack growth in high strength steels. Appl. Mater. Res. 4, 34 (1965)

    Google Scholar 

  10. Steigerwald, E.A., Benjamin, W.D.: Stress Corrosion Cracking Mechanisms in Martensitic High Strength Steels, 3rd Quarter Progress Report, Contr. No. AF 33(615)-3651, Air Force Materials Laboratory (1967)

    Google Scholar 

  11. Peterson, M.H., Brown, B.F., Newbegin, R.L., Groover, R.E.: Stress corrosion cracking of high strength steels and titanium alloys in chloride solution at ambient temperature. Corrosion 23, 142 (1967)

    Article  Google Scholar 

  12. Landes, J.D.: Stress Corrosion Crack Growth, Lecture on the Use of Fracture Mechanics at Westinghouse, Pittsburgh, PA (1974)

    Google Scholar 

  13. Wei, R.P, Novak, S.R., Williams, D.P.: Some Important Considerations in the Development of Stress Corrosion Cracking Test Methods, AGARD Conference Proceedings No. 98, pp. 5–1, 8 (1972)

    Google Scholar 

  14. Che-yu Li, P., Talda, M., Wei, R.P.: Int. J. Fracture Mech. 3, 29 (1967)

    Google Scholar 

  15. Landes, J.D., Wei, R.P.: The kinetics of subcritical crack Groth and deformation in a high strength steel. Journal of Engineering Materials and Technology, ASME Series H, Vol. 1, pp. 2/9 (Jan, 1973)

    Google Scholar 

  16. Johnson, H.H., Paris, P.C.: Sub-critical flaw growth. Eng. Fract. Mech.Fract. Mech. 1, 3–45 (1968)

    Article  Google Scholar 

  17. ASTM, G.: 39, Metal Corrosion, Erosion, and Wear Standards, Annual Book of ASTM, American Society for Testing and Materials, Vol. 03.02, Section 3

    Google Scholar 

  18. McIntyre, P.: The relationship between stress corrosion cracking and sub critical flaw growth in hydrogen and hydrogen sulphide gases. In: Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, National Association of Corrosion Engineers, p. 788 (1977)

    Google Scholar 

  19. Clark, W.G. Jr., Landes, J.D.: The Effect of Hydrogen Gas Environment on the Crack Initiation, Growth and Fracture Properties of 180 ksi Yield Strength Type 4340 Steel, Westinghouse Research Report 73-7E7-ETIWA-R1, (5 April, 1973)

    Google Scholar 

  20. Clark, W.G. Jr., An Evaluation of the Crack Growth and Fracture Properties of 18Mn-5Cr Steel in Generator Environment, Westinghouse Research Report 73-1E7-MAGRR-R1, (3 May, 1973)

    Google Scholar 

  21. Nelson, H.G., Williams, D.P.: Quantitative observations of hydrogen induced slow crack growth in a low alloy steel. In: Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, National Association of Corrosion Engineers, p. 390 (1977)

    Google Scholar 

  22. Kwon, H.S., Cho, E.A., Yeom, K.A.: Predeiction of stress corrosion cracking susceptibility of stainless steels based on repassivation kinetics. Corrosion, NACE Int. 56(1), 40 (2000)

    Google Scholar 

  23. Kim, C.D., Wilde, B.E.: A review of constant strain-rate stress corrosion cracking test. In: Ugianski, G.M., Payer, J.H. (Eds.), Stress Corrosion Cracking—The Slow Strain Rate Technique, ASTM STP 665, pp. 97–112. (American Society for Testing and Materials, 1979)

    Google Scholar 

  24. Kwon, H.S., Cho, E.A., Yeom, K.A.: Prediction of stress corrosion cracking susceptibility of stainless steels based on repassivation kinetics. Corrosion 56(1), 37 (2000)

    Article  Google Scholar 

  25. Searles, J.L., Gouma, P.I., Buchheit, R.G.: Stress corrosion cracking of sensitized AA5083. Metall. Mater. Trans. A 32A, 2865 (2001)

    Google Scholar 

  26. Graville, B.A., Baker, R.G., Watkinson, F.: Br. Weld. J. 14, 337 (1967)

    Google Scholar 

  27. Moody, N.R., Robinson, S.L., Garrison, W.M., Jr.: Hydrogen effects on the properties and fracture modes of iron-based alloys. Res. Mech. 30, 143–206 (1990)

    Google Scholar 

  28. Chornet, E., Coughlin, R.: Chemisorption of hydrogen in iron. J. Catal.Catal. 27, 246–265 (1972)

    Article  Google Scholar 

  29. Gangloff, R.P., Wei, R.P.: Gaseous hydrogen embrittlement of high strength steels. Met. Trans. 8°, 1043–1053 (1977)

    Google Scholar 

  30. Gangloff, R.P., Wei, R.P.: In fractography in failure analysis, ASTM STP 645, pp. 87–106. ASTM International, West Conshohocken, PA (1978)

    Book  Google Scholar 

  31. Procter, R.P.M., Paxton, H.W.: Trans. ASM 62, 989 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milella, P.P. (2024). Fracture Mechanics Approach to Stress Corrosion. In: Fatigue and Corrosion in Metals. Springer, Cham. https://doi.org/10.1007/978-3-031-51350-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51350-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51349-7

  • Online ISBN: 978-3-031-51350-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics