Skip to main content

Nature and Phenomenology of Fatigue

  • Chapter
  • First Online:
Fatigue and Corrosion in Metals
  • 168 Accesses

Abstract

For centuries man has been aware that the repeated application of loads would lead to the early failure of materials. It came as something of a surprise, however, when he also found, almost two centuries ago, that failure could occur under stresses of relatively low amplitude, lower than the yield strength σy of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braithwaite, F.: In: On the Fatigue and Consequent Fracture of Metals, Institution of Civil Engineers, Minutes of Proceedings, vol. 13, pp. 463–474. London (1854)

    Google Scholar 

  2. Poncelet, J.V.: Introduction à la Mécanique Industrielle, Physique ou Expérimentale, Zweite Ausgabe. Paris, Imprimerie de Gauthier-Villars (1939)

    Google Scholar 

  3. Albert, W.A.J.: Über Treibseile am Harz, Archiv für Mineralogie. Georgnosie. Bergbau und Hüttenkunde 10, 215–234 (1837)

    Google Scholar 

  4. Wöhler, A.: Über die Festigkeits-Versuche mit Eisen und Sthal, Zeitschrift für Bauwesen. vol. 20, pp. 73–106. (1870)

    Google Scholar 

  5. Basquin, O.H.: The exponential low of endurance tests. In: Proceedings Annual Meeting, American society for Testing and Materials. vol. 10, pp. 625–630. (1910)

    Google Scholar 

  6. Gough, H.J.: The Fatigue of Metals. Scott, Greenwood, London (1924)

    Google Scholar 

  7. Malcom, J.: Seconds from Disaster Derailment at Eschede, You Tube, 3 May (2013)

    Google Scholar 

  8. Rankine, W.J.M.: On the causes of unexpected breakage of the journals of the railway axles and on the means of preventing such accidents by observing the law of continuity in their construction. Institution of Civil Engineers, Minutes of Proceedings, vol. 2, pp. 105–108. London (1842)

    Google Scholar 

  9. Neuber, H.: In: Theory of Notch Stresses: Principle for Exact Stress Calculation. J.W. Edwards, Publishers, Incorporated, Ann Arbor, Michigan (1946)

    Google Scholar 

  10. Peterson, R.E.: Stress Concentration Factors. Wiley, New York (1973)

    Google Scholar 

  11. Ewing and Humfrey.: In: The Fracture of Metals Under Repeated Alterations of Stress. vol. 221, pp. 241–253. Philosophical Transactions of the Royal Society (1903)

    Google Scholar 

  12. Douglas, W.D.: Methods Employed at the Royal Aircraft Establishment for the Experimental Determination of the Ultimate Strength of aeroplane Structures. Advis. Comm. Aero. Rep. Memo. No. 476, June (1918)

    Google Scholar 

  13. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. Trans. of ASME 528–534 (1963)

    Google Scholar 

  14. Elber, W.: Fatigue Crack Propagation: Some Effects of Crack Closure on the Mechanism of Fatigue Crack Propagation and Cyclic Tensile Loading. Ph.D. Thesis, University of New South Wales (1968)

    Google Scholar 

  15. Smith H.R., Piper, D.E., Downey, F.K.: A study of stress corrosion cracking by wedge force loading, Eng. Fract. Mech. I, 123–128 (1968)

    Google Scholar 

  16. Keisler, J., Chopra, O.K., Shack, W.J.: Statistical analysis of fatigue strain-life data for carbon and low-alloy steels. US-NRC, NUREG/CR-6237, Argonne Nat. Lab. (1994)

    Google Scholar 

  17. Environmentally Assisted Cracking in Light Water Reactors.: US NRC, NUREG/CR-4667, Vol. 22, Prepared by Chopra, O.K. et al. (ed) Semiannual Report, January 1996-June (1996)

    Google Scholar 

  18. Fatigue Design Handbook.: SAE, 2nd edn. pp. 41. (1988)

    Google Scholar 

  19. Fuchs, H.O., Stephens, R.I.: In: Metal Fatigue in Engineering. Wiley & Sons (1980)

    Google Scholar 

  20. Langraf, R.W.: The resistance of metals to cyclic loading. Achievement of High Fatigue Resist. Alloys, ASTM-STP 467, pp. 27. (1970)

    Google Scholar 

  21. Bennet, J.A.: The distinction between initiation and propagation of a fatigue crack. In: International Conference on Fatigue of Metals, London, The Institution of Mechanical Engineers, September (1956)

    Google Scholar 

  22. Pardue, T.E., Melcher J.L., Good W.B.: Proceeding of Society of Experimental Stress Analysis. vol. 1, pp. 27. (1950)

    Google Scholar 

  23. Yokobori, T.: J. Phys. Soc. Japan 6, 81 (1951)

    Article  Google Scholar 

  24. Polakowski, N.H.: In: Proceedings ASTM. vol. 52, pp. 1086. (1952)

    Google Scholar 

  25. Polakowski, N.H., Palchoudhuri, A.: Softening of certain cold worked metals under the action of fatigue loads. In: Proceedings of ASTM, vol. 54 (1954); Lipsitt, H.A., Horne, G.T.: Proceedings of ASTM, vol. 57, pp. 592. (1957)

    Google Scholar 

  26. Dugdale, D.S.: J. Mech. Phys. Solids 7, 135 (1959)

    Article  Google Scholar 

  27. Feltner, C.E., Laird, C.: Cyclic stress-strain I of FCC metals and alloys. Acta Metall. 15, 1621–1653 (1967)

    Article  Google Scholar 

  28. Burbach, J.: Zum Zyklischen Verformungsverhalten einiger Technischer Werkstoffe. Technischen Mittelungen Krupp Forschungsberichte, Bd. 28, H. 2, pp. 55–102. (1970)

    Google Scholar 

  29. Conway, J.B., Stentz, R.H.: Low-cycle and high-cycle fatigue characteristic of forged and cast 304 SS steel at room temperature and 427 °C, ASME MPC, Winner Annual Meeting, vol. 25. pp. 59–145 (1984)

    Google Scholar 

  30. Morrow, J.: Cyclic plastic strain energy and fatigue of metals. In: Internal Friction, Damping and Cyclic Plasticity, ASTM-STP 378, pp. 45. (1965)

    Google Scholar 

  31. Kemsley, D.S.: J. Institute of Metals 87, 10–15 (1959)

    Google Scholar 

  32. Laird, C.: The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: 69th ASTM Annual Meeting, Atlantic City, N.J., Paper No. 32 (1966)

    Google Scholar 

  33. Hull, D., Bacon, D.J.: In: Introduction to Dislocations. 5th edn. Elsevier (2011)

    Google Scholar 

  34. Reed-Hill, R.E.: In: Physical Metallurgy Principles. D. Van Nostrand Co. (1973)

    Google Scholar 

  35. Callister, W.D.: In: Material Science and Engineering. Wiley and Sons

    Google Scholar 

  36. Guy, A.G.: In: Introduction to Materials Science. McGraw-Hill Book Co. (1971)

    Google Scholar 

  37. Guinier, A.: Nature 142, 13 (1938)

    Article  Google Scholar 

  38. Preston, G.D.: Proc. Roy. Soc. A167, 526 (1938)

    Google Scholar 

  39. Askeland, D.R.: In: The Science and Engineering of Materials; 3th SI edn. Chapman and Hall, London (1996)

    Google Scholar 

  40. Bjørge, R., Nakashima, P.N.H., Marioara, C.D., Andersen, S.J., Muddle, B.C., Etheridge, J., Holmestad, R.: Precipitates in an Al-Mn-Ge alloy studied by aberration-corrected scanning transmission electron microscopy. pp. 73. Acta Materialia Inc., Elsevier Ltd (2011)

    Google Scholar 

  41. Clark, J.B., McEvily, A.J.: Interaction of dislocation structures in cyclically strained aluminium alloys. Acta Metall. 12, 1359 (1964)

    Article  Google Scholar 

  42. Calabrese, C., Laird, C.: Mater. Sci. Eng. 13, 141–150 (1974)

    Article  Google Scholar 

  43. Calabrese, C., Laird, C.: Mater. Sci. Eng. 13, 149–170 (1974)

    Google Scholar 

  44. Duva, J.M., Daeubler, M.A., Starke, E.A., Luetjering, G.: Acta Metallurgica 36(3), 585 (1988)

    Google Scholar 

  45. Baxter, W.J., McKinney, T.R.: Metallurgical Trans. 19A, 83 (1988)

    Article  Google Scholar 

  46. Metals Handbook, Properties and Selection, ASM Vol. 1, 8th edn. pp. 223. (1975)

    Google Scholar 

  47. Smith, R.W., Hirschberg, M.H., Manson, S.S.: NASA TN D-1574 (1963)

    Google Scholar 

  48. Manson, S.S., Hirschberg, M.H.: In: Fatigue: an Interdisciplinary Approach. pp. 133. Syracuse University Press, Syracuse, N.Y., (1964)

    Google Scholar 

  49. Gough, H.J.: The Fatigue of Metals. Ernest Benn Ltd., London (1926)

    Google Scholar 

  50. Forrest, P.G.: In: In: International Conference on Fatigue, Institution of Mechanical Engineers, pp. 171. (1956)

    Google Scholar 

  51. Roberts, E., Honeycombe R.W.K.: J. Inst. Metals 91, 134 (1962–63)

    Google Scholar 

  52. Haigh, B.P.: Trans. Farady Soc. 24, 125 (1928)

    Article  Google Scholar 

  53. Kocanda, S.: In: Fatigue Failure of Metals. Sijthoff & Noordhoff Int. Pubs (1978)

    Google Scholar 

  54. Alden, T.H., Backofen, W.A.: Acta Metall. 9, 352 (1961)

    Article  Google Scholar 

  55. Morrow, J.: Cyclic plastic strain energy and fatigue of metals. American Society for Testing and Materials, STP-378, pp. 45–87. (1965)

    Google Scholar 

  56. Landgraf, R.W., Morrow, J.D., Endo, T.: Determination of the cyclic stress-strain curve. J. Mater. JMLSA 4(1), 176–188 (1969)

    Google Scholar 

  57. Feltner, C.E., Mitchell, M.R.: BASIC research on the cyclic deformation and fracture behavior of materials. In: Manual on Low-cycle Fatigue Testing, American Society for Testing and Materials, STP 465, pp. 27–66. (1969)

    Google Scholar 

  58. Landgraf, R.W.: Cyclic deformation and fracture of hardened steels. In: International Conference on Mechanical Behavior of Materials, Kyoto, Japan (1972)

    Google Scholar 

  59. Maier, H.J., Donth, B., Bayerlein, M., Mughrabi, H., Meier, B., Kesten, M., Metallkde, Z.: Low temperature fatigue induced martensitic transformation on the low cycle fatigue behaviour of stainless steel. 84, 820–843 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milella, P.P. (2024). Nature and Phenomenology of Fatigue. In: Fatigue and Corrosion in Metals. Springer, Cham. https://doi.org/10.1007/978-3-031-51350-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51350-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51349-7

  • Online ISBN: 978-3-031-51350-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics