Skip to main content

Levels of Access to Biomimetics

  • Chapter
  • First Online:
Biomimetics, Biodesign and Bionics

Abstract

The bio-inspired approach, whether applied to product, service, or material design, offers various levels of engagement with nature’s information transfer. Biomimetics can draw inspiration from biological systems through different lenses, starting with the most intuitive and accessible aspects, such as formal and external characteristics, and extending to more intricate realms involving behaviors like self-organization and learning. When designing biomimetic products, it is crucial not only to precisely define the organisms of reference but also to specify the biological traits and functionalities being incorporated, as well as the depth of engagement with nature’s principles. This chapter aims to introduce a structured interpretative framework and design methodology for biomimetic projects, based on different access levels to biomimetics: aesthetic-morphological, generative-constructional, structural, material, dynamic, physiological, communication, and behavior and organization levels. For each of these levels, we will provide descriptions of biomimetic products developed within the Hybrid Design Lab to illustrate and elucidate the interpretative framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gruber, P. (2011). Biomimetics in architecture: Architecture of life and buildings (pp. 418–426). Springer.

    Book  Google Scholar 

  2. Bar-Cohen, Y. (2005). Biomimetics: Biologically inspired technologies. CRC Press.

    Book  Google Scholar 

  3. Langella, C., & Perricone, V. (2019). Hybrid biomimetic design for sustainable development through multiple perspectives. GRID-Architecture Planning and Design Journal, 2(2), 44–76.

    Article  Google Scholar 

  4. Misteli, T. (2001). The concept of self-organization in cellular architecture. The Journal of Cell Biology, 155(2), 181.

    Article  CAS  Google Scholar 

  5. Langella, C., Arruda, A. J., & Di Bartolo, C. (2022). Revising Biomimetics: Opportunities and ambiguities in the bioinspired design approach. DIID Disegno Industriale Industrial Design, 78.

    Google Scholar 

  6. Speck, T., Speck, O., Beheshti, N., & McIntosh, A. C. (2008). Process sequences in biomimetic research. Design and Nature IV, 114, 3–1.

    Google Scholar 

  7. Baumeister, D., Tocke, R., Dwyer, J., Ritter, S., & Benyus, J. (2013). Biomimicry resource handbook: A seed bank of knowledge and best practices (Vol. 3, p. 8). Biomimicry.

    Google Scholar 

  8. Ball, P. (2016). Patterns in nature: Why the natural world looks the way it does. University of Chicago Press.

    Book  Google Scholar 

  9. Perricone, V., Santulli, C., Rendina, F., & Langella, C. (2021). Organismal design and biomimetics: A problem of scale. Biomimetics, 6(4), 56.

    Article  Google Scholar 

  10. De Tommasi, E., De Luca, A. C., Lavanga, L., et al. (2014). Biologically enabled sub-diffractive focusing. Optics Express, 22(22), 27214–27227.

    Article  Google Scholar 

  11. Sane, S. P. (2016). Bioinspiration and biomimicry: What can engineers learn from biologists? Journal of Applied Science and Engineering, 19(1), 1–6.

    Google Scholar 

  12. Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A., & Haq, M. I. U. (2022). 3D printing–A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers, 3, 33–42.

    Article  Google Scholar 

  13. Chirazi, J. E. (2022). Commercialization journeys: Bringing biomimetic innovation to the market. In Biomimicry for materials, design and habitats (pp. 393–436). Elsevier.

    Chapter  Google Scholar 

  14. Kellert, S. R., & Wilson, E. O. (Eds.). (1995). The biophilia hypothesis. Island Press.

    Google Scholar 

  15. Orians, G. H., & Heerwagen, J. H. (1992). Evolved responses to landscapes. In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 555–579). Oxford University Press.

    Chapter  Google Scholar 

  16. Mealey, L., & Theis, P. (1995). The relationship between mood and preferences among natural landscapes: An evolutionary perspective. Ethology and Sociobiology, 16(3), 247–256.

    Article  Google Scholar 

  17. Kawabata, H., & Zeki, S. (2004). Neural correlates of beauty. Journal of Neurophysiology, 91(4), 1699–1705.

    Article  Google Scholar 

  18. Browning, W. D., Ryan, C. O., & Clancy, J. O. (2014). 14 Patterns of biophilic design. Terrapin Bright Green llc.

    Google Scholar 

  19. Hettinger, N. (2017). Evaluating positive aesthetics. Journal of Aesthetic Education, 51(3), 26–41.

    Article  Google Scholar 

  20. Laidre, M. E. (2021). Animal architecture. Current Biology, 31(22), R1458–R1464.

    Article  CAS  Google Scholar 

  21. Perricone, V., Grun, T. B., Marmo, F., Langella, C., & Carnevali, M. D. C. (2020). Constructional design of echinoid endoskeleton: Main structural components and their potential for biomimetic applications. Bioinspiration & Biomimetics, 16(1), 011001.

    Article  Google Scholar 

  22. Hansell, M. (2007). Built by animals: The natural history of animal architecture. Oxford University Press.

    Book  Google Scholar 

  23. Fuller, R. B. (1982). Synergetics. Macmillan Publication.

    Google Scholar 

  24. Hansell, M. H. (2005). Animal architecture. Oxford University Press.

    Book  Google Scholar 

  25. Perricone, V., Grun, T. B., Rendina, F., Marmo, F., Candia, C. M. D., Kowalewski, M., Langella, C., & Micheletti, A. (2022). Hexagonal Voronoi pattern detected in the microstructural design of the echinoid skeleton. Journal of the Royal Society Interface, 19(193), 20220226.

    Article  Google Scholar 

  26. Fitzgerald, T. D., Miller, S., & Smith, M. (2012). Thermal properties of the tent of early instar colonies of the eastern tent caterpillar, Malacosoma americanum (Lepidoptera: Lasiocampidae). Journal of Thermal Biology, 37(8), 615–624.

    Article  Google Scholar 

  27. Knudson, D. V., & Knudson, D. (2007). Fundamentals of biomechanics (Vol. 183). Springer.

    Google Scholar 

  28. Aziz, M. S. (2016). Biomimicry as an approach for bio-inspired structure with the aid of computation. Alexandria Engineering Journal, 55(1), 707–714.

    Article  Google Scholar 

  29. Barthelat, F., Tang, H., Zavattieri, P. D., Li, C. M., & Espinosa, H. D. (2007). On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. Journal of the Mechanics and Physics of Solids, 55(2), 306–337.

    Article  CAS  Google Scholar 

  30. Burdick, J. A., & Mauck, R. L. (Eds.). (2010). Biomaterials for tissue engineering applications: A review of the past and future trends. SpringerWien.

    Google Scholar 

  31. Palmiero, C., Imparato, G., Urciuolo, F., & Netti, P. (2010). Engineered dermal equivalent tissue in vitro by assembly of microtissue precursors. Acta Biomaterialia, 6(7), 2548–2553.

    Article  Google Scholar 

  32. Langella, C. (2023). Biodesign as a strategy of autonomy in the emergency scenario. Cuadernos del Centro de Estudios de Diseño y Comunicación, 190, 29–47. ISSN 1668-0227.

    Google Scholar 

  33. Brownell, B. (Ed.). (2010). Transmaterial 3: A catalog of materials that redefine our physical environment. Princeton Architectural Press.

    Google Scholar 

  34. Brown, A. J. (1886). An acetic ferment which forms cellulose. Journal of the Chemical Society, 49, 432–439.

    Article  CAS  Google Scholar 

  35. Llanos, M. (2012). Suzanne Lee and her celluloid clothing. Trendland. Retrieved June 20, 2012, from http://trendland.com/suzanne-lee-and-her-celluloid-clothing/

  36. Langella, C. (2023). Bacterioscape. For nature/with nature: New sustainable design scenarios, Springer Series.

    Google Scholar 

  37. Langella, C., & Fiume, M. (2023). Biodesign: The project that instructs nature. Cuadernos del Centro de Estudios de Diseño y Comunicación, 190, 17–28. ISSN 1668-0227.

    Google Scholar 

  38. González, L. M., Mukhitov, N., & Voigt, C. A. (2020). Resilient living materials built by printing bacterial spores. Nature Chemical Biology, 16(2), 126–133.

    Article  Google Scholar 

  39. Gilbert, C., Tang, T. C., Ott, W., Dorr, B. A., Shaw, W. M., Sun, G. L., et al. (2021). Living materials with programmable functionalities grown from engineered microbial co-cultures. Nature Materials, 20(5), 691–700.

    Article  CAS  Google Scholar 

  40. Heveran, C. M., Williams, S. L., Qiu, J., Artier, J., Hubler, M. H., Cook, S. M., et al. (2020). Biomineralization and successive regeneration of engineered living building materials. Matter, 2(2), 481–494.

    Article  CAS  Google Scholar 

  41. Sequeira, A. A., Usman, A., Tharakan, O. P., & Ali, M. Z. (2016). Biologically inspired robots into a new dimension-A review. International Journal of Automation, Mechatronics & Robotics, 3(1), 106–116.

    Google Scholar 

  42. He, T., Li, Z., & Deng, W. (2011). Biological adhesion of Parthenocissus tricuspidata. Archives of Biological Sciences, 63(2), 393–398.

    Article  Google Scholar 

  43. Badarnah, L., & Fernandez, J. E. (2015). Morphological configurations inspired by nature for thermal insulation materials. Proceedings of IASS Annual Symposia, 2015(4), 1–12. International Association for Shell and Spatial Structures (IASS).

    Google Scholar 

  44. Takahashi, K., Ito, T., Onda, Y., Endo, T., Chiba, S., Ito, K., & Osada, H. (2007). Modeling of the thermoregulation system in the skunk cabbage: Symplocarpus foetidus. Physical Review E, 76(3), 031918.[44].

    Article  Google Scholar 

  45. Bradbury, J. W., & Vehrencamp, S. L. (1998). Principles of animal communication (Vol. 132). Sinauer Associates.

    Google Scholar 

  46. Wood, W. F. (1983). Chemical ecology: Chemical communication in nature. Journal of Chemical Education, 60(7), 531.

    Article  CAS  Google Scholar 

  47. Hopp, S. L., Owren, M. J., & Evans, C. S. (Eds.). (2012). Animal acoustic communication: Sound analysis and research methods. Springer.

    Google Scholar 

  48. Osorio, D., & Vorobyev, M. (2008). A review of the evolution of animal colour vision and visual communication signals. Vision Research, 48(20), 2042–2051.

    Article  CAS  Google Scholar 

  49. Patricelli, G. L., & Hebets, E. A. (2016). New dimensions in animal communication: The case for complexity. Current Opinion in Behavioral Sciences, 12, 80–89.

    Article  Google Scholar 

  50. Quicke, D. L. J. (2017). Mimicry, crypsis, masquerade and other adaptive resemblances. Wiley.

    Google Scholar 

  51. Pasteur, G. (1982). A classificatory review of mimicry systems. Annual Review of Ecology and Systematics, 13(1), 169–199.

    Article  Google Scholar 

  52. Mappes, J., & Alatalo, R. V. (1997). Effects of novelty and gregariousness in survival of aposematic prey. Behavioral Ecology, 8(2), 174–177.

    Article  Google Scholar 

  53. Quesnel, V., & Stradling, D. J. (2012). Evidence for the function of the eye-spots in the butterfly genera Caligo and Eryphanis (Lepidoptera: Nymphalidae: Morphinae: Brassolini). Living World, Journal of the Trinidad and Tobago Field Naturalists’ Club.

    Google Scholar 

  54. Launchbaugh, K. L., & Provenza, F. D. (1993). Can plants practice mimicry to avoid grazing by mammalian herbivores? Oikos, 501–504.

    Google Scholar 

  55. Stökl, J., Brodmann, J., Dafni, A., Ayasse, M., & Hansson, B. S. (2011). Smells like aphids: Orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination. Proceedings of the Royal Society B: Biological Sciences, 278(1709), 1216–1222.

    Article  Google Scholar 

  56. Sherratt, T. N. (2008). The evolution of Müllerian mimicry. Naturwissenschaften, 95(8), 681–695.

    Article  CAS  Google Scholar 

  57. Raška, J., & Pekár, S. (2019). Do ladybird spiders really mimic ladybird beetles? Biological Journal of the Linnean Society, 126(1), 168–177.

    Article  Google Scholar 

  58. Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., et al. (2018). Toward chemical communication between nanodevices. Nano Today, 18, 8–11.

    Article  CAS  Google Scholar 

  59. Cuthill, I. C., Allen, W. L., Arbuckle, K., Caspers, B., Chaplin, G., Hauber, M. E., et al. (2017). The biology of color. Science, 357(6350), eaan0221.

    Article  Google Scholar 

  60. Sasaki, T., & Pratt, S. C. (2018). The psychology of superorganisms: Collective decision making by insect societies. Annual Review of Entomology, 63, 259–275.

    Article  CAS  Google Scholar 

  61. Harwood R. F., & James M. T. (1979). Entomology in human and animal health (7th Edn.). Macmillan Publishing Co. Inc

    Google Scholar 

  62. Kempe, K. J., & Shaltout, H. A. (2011). Non-verbal communication of compassion: Measuring psychophysiologic effects. BMC Complementary and Alternative Medicine, 11(1), 1–9.

    Google Scholar 

  63. Kelso, J. S. (2007). Understanding complex systems. Springer.

    Google Scholar 

  64. Lewin, R. A. (1982). Symbiosis and parasitism—Definitions and evaluations. Bioscience, 32(4), 254–260.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Langella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langella, C. (2024). Levels of Access to Biomimetics. In: Arruda, A.J.V., Palombini, F.L. (eds) Biomimetics, Biodesign and Bionics. Environmental Footprints and Eco-design of Products and Processes. Springer, Cham. https://doi.org/10.1007/978-3-031-51311-4_9

Download citation

Publish with us

Policies and ethics