Skip to main content

Bionics and Design: 3D Microstructural Characterization of Cork for the Development of Conceptual Products

  • Chapter
  • First Online:
Biomimetics, Biodesign and Bionics

Abstract

Several natural materials are known for their properties in terms of shock absorption and compressive strength, like the case of some plant tissues and structures. When analyzed with new 3D technologies, such structures can be used as a source of inspiration for the development of new projects, aiming at improving their performance. Cork is considered an outstanding biological material in terms of mechanical performance, due to the combination of high energy absorption, compressive resistance, and elasticity. Despite having a regular honeycomb structure, cork performance is still considered a gold standard in many applications and thus has a great potential to be used as a source of inspiration for new designs. With recent advances in finite element analysis (FEA) based on high-resolution X-ray microtomography, new insights can be made regarding its 3D cellular structure, allowing the development of new applications of cork based on the study of bionics, biomimetics, and biodesign. This chapter approaches the noninvasive, high-resolution 3D investigation of cork aiming to apply its 3D morphology in the development of new conceptual bioinspired products, through the study of bionics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullah, N. A. Z., Sani, M. S. M., Salwani, M. S., & Husain, N. A. (2020). A review on crashworthiness studies of crash box structure. Thin-Walled Structures, 153, 106795. https://doi.org/10.1016/J.TWS.2020.106795

    Article  Google Scholar 

  2. Yang, X., Ma, J., Wen, D., & Yang, J. (2020). Crashworthy design and energy absorption mechanisms for helicopter structures: A systematic literature review. Progress in Aerospace Sciences, 114, 100618. https://doi.org/10.1016/J.PAEROSCI.2020.100618

    Article  Google Scholar 

  3. Hoshizaki, T. B., Post, A., Oeur, R. A., & Brien, S. E. (2014). Current and future concepts in helmet and sports injury prevention. Neurosurgery, 75, S136–S148. https://doi.org/10.1227/NEU.0000000000000496

    Article  Google Scholar 

  4. Ramli Sulong, N. H., Mustapa, S. A. S., & Abdul Rashid, M. K. (2019). Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, 136, 47529. https://doi.org/10.1002/APP.47529

    Article  Google Scholar 

  5. Baroutaji, A., Sajjia, M., & Olabi, A. G. (2017). On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments. Thin-Walled Structures, 118, 137–163. https://doi.org/10.1016/J.TWS.2017.05.018

    Article  Google Scholar 

  6. Gibson, L. J., & Ashby, M. F. (1999). Cellular solids: Structure and properties (2nd ed.). Cambridge University Press.

    Google Scholar 

  7. Gibson, L. J., Ashby, M. F., & Harley, B. A. (2010). Cellular materials in nature and medicine. Cambridge University Press.

    Google Scholar 

  8. Prabhu, S., Raja, V. K. B., & Nikhil, R. (2015). Applications of cellular materials – An overview. Applied Mechanics and Materials, 766–767, 511–517. https://doi.org/10.4028/www.scientific.net/AMM.766-767.511

    Article  Google Scholar 

  9. Palombini, F. L., Mariath, J. E. A., & Oliveira, B. F. (2020). Bionic design of thin-walled structure based on the geometry of the vascular bundles of bamboo. Thin-Walled Structures, 155, 106936. https://doi.org/10.1016/j.tws.2020.106936

    Article  Google Scholar 

  10. Tarlochan, F., Samer, F., Hamouda, A. M. S., et al. (2013). Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Structures, 71, 7–17. https://doi.org/10.1016/j.tws.2013.04.003

    Article  Google Scholar 

  11. Huang, H., & Xu, S. (2019). Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads. Thin-Walled Structures, 144, 106333. https://doi.org/10.1016/j.tws.2019.106333

    Article  Google Scholar 

  12. Wikimedia Commons. https://commons.wikimedia.org/wiki/Main_Page. Accessed 10 Sep 2023.

  13. Palombini, F. L., Nogueira, F. M., de Oliveira, B. F., & de Araujo Mariath, J. E. (2022). Two-way bionics: How technological advances for bioinspired designs contribute to the study of plant anatomy and morphology. In F. L. Palombini & S. S. Muthu (Eds.), Bionics and sustainable design (pp. 17–44). Springer.

    Chapter  Google Scholar 

  14. Palombini, F. L., Kindlein Junior, W., de Oliveira, B. F., & Mariath, J. E. A. (2016). Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography. Materials Characterization, 120, 357–368. https://doi.org/10.1016/j.matchar.2016.09.022

    Article  CAS  Google Scholar 

  15. Palombini, F. L., de Oliveira, B. F., Nogueira, F. M., et al. (2023). 3D cellular characterization and finite element analysis of cork compressive behavior based on high-resolution X-ray microtomography. Wood Science and Technology. https://doi.org/10.1007/s00226-023-01483-5

  16. Sagartzazu, X., Hervella-Nieto, L., & Pagalday, J. M. (2008). Review in sound absorbing materials. Archives of Computational Methods in Engineering, 15, 311–342. https://doi.org/10.1007/s11831-008-9022-1

    Article  Google Scholar 

  17. Al Rifaie, M., Abdulhadi, H., & Mian, A. (2022). Advances in mechanical metamaterials for vibration isolation: A review. Advances in Mechanical Engineering, 14, 168781322210828. https://doi.org/10.1177/16878132221082872

    Article  Google Scholar 

  18. Online Materials Information Resource – MatWeb. https://www.matweb.com/index.aspx. Accessed 10 Sep 2023.

  19. Okolieocha, C., Raps, D., Subramaniam, K., & Altstädt, V. (2015). Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. European Polymer Journal, 73, 500–519. https://doi.org/10.1016/J.EURPOLYMJ.2015.11.001

    Article  CAS  Google Scholar 

  20. Singh, S., & Bhatnagar, N. (2018). A survey of fabrication and application of metallic foams (1925–2017). Journal of Porous Materials, 25, 537–554. https://doi.org/10.1007/s10934-017-0467-1

    Article  Google Scholar 

  21. Hammel, E. C., Ighodaro, O. L. R., & Okoli, O. I. (2014). Processing and properties of advanced porous ceramics: An application based review. Ceramics International, 40, 15351–15370. https://doi.org/10.1016/J.CERAMINT.2014.06.095

    Article  CAS  Google Scholar 

  22. Cidade, M. K., Perini, J. T., & Palombini, F. L. (2022). Bionics for inspiration: A new look at Brazilian natural materials for application in sustainable jewelry. In F. L. Palombini & S. S. Muthu (Eds.), Bionics and sustainable design (pp. 195–223). Springer.

    Chapter  Google Scholar 

  23. Ormondroyd, G. A., & Morris, A. F. (2018). Designing with natural materials. CRC Press.

    Book  Google Scholar 

  24. Peters, W. S. (2023). The cells of Robert Hooke: Pores, fibres, diaphragms and the cell theory that wasn’t. Notes and Records: the Royal Society Journal of the History of Science. https://doi.org/10.1098/rsnr.2022.0049

  25. Free Images & Free stock photos – PxHere. https://pxhere.com/en/. Accessed 10 Sep 2023.

  26. Fortes, M. A., & Teresa Nogueira, M. (1989). The poisson effect in cork. Materials Science and Engineering: A, 122, 227–232. https://doi.org/10.1016/0921-5093(89)90634-5

    Article  Google Scholar 

  27. Echave, J., Barral, M., Fraga-Corral, M., et al. (2021). Bottle aging and storage of wines: A review. Molecules, 26, 713. https://doi.org/10.3390/MOLECULES26030713

  28. Silva, S. P., Sabino, M. A., Fernandes, E. M., et al. (2005). Cork: Properties, capabilities and applications. International Materials Reviews, 50, 345–365. https://doi.org/10.1179/174328005X41168

    Article  CAS  Google Scholar 

  29. Pereira, H. (2007). Cork : Biology, production and uses. Elsevier.

    Google Scholar 

  30. Gil, L. (2015). New cork-based materials and applications. Materials, 8, 625–637. https://doi.org/10.3390/ma8020625

    Article  Google Scholar 

  31. Knapic, S., Oliveira, V., Machado, J. S., & Pereira, H. (2016). Cork as a building material: A review. European Journal of Wood and Wood Products, 74, 775–791. https://doi.org/10.1007/s00107-016-1076-4

    Article  Google Scholar 

  32. Carvalho, L., & Williams, B. (2014). Let the cork fly: Creativity and Innovation in a Family Business. 15, 127–133. https://doi.org/10.5367/IJEI.2014.0146.

  33. Arruda, A. (2023). Map research bionics transdisciplinary ecosystems in bionics, biodesign and biomimicry: Scientific and technological aspects for a design culture. Editora Blucher.

    Google Scholar 

  34. Palombini, F. L., & Muthu, S. S. (2022). Bionics and sustainable design. Springer.

    Book  Google Scholar 

  35. Speck, O., Speck, D., Horn, R., et al. (2017). Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspiration & Biomimetics, 12, 011004. https://doi.org/10.1088/1748-3190/12/1/011004

    Article  Google Scholar 

  36. Kindlein Júnior, W., & Guanabara, A. S. (2005). Methodology for product design based on the study of bionics. Materials and Design, 26, 149–155. https://doi.org/10.1016/j.matdes.2004.05.009

    Article  Google Scholar 

  37. Palombini, F. L., Cidade, M. K., Oliveira, B. F., & Mariath, J. E. A. (2021). From light microscopy to X-ray microtomography: Observation technologies in transdisciplinary approaches for bionic design and botany. Cuadernos del Centro de Estudios en Diseño y Comunicación, 149, 61–74. https://doi.org/10.18682/cdc.vi149.5516

    Article  Google Scholar 

  38. Boyd, S. K. (2009). Micro-computed tomography. In Advanced imaging in biology and medicine (pp. 3–25). Springer.

    Chapter  Google Scholar 

  39. Palombini, F. L., Kindlein Júnior, W., Silva, F. P., & Mariath, J. E. A. (2017). Design, biônica e novos paradigmas: uso de tecnologias 3D para análise e caracterização aplicadas em anatomia vegetal. Design e Tecnologia, 7, 46. https://doi.org/10.23972/det2017iss13pp46-56

    Article  Google Scholar 

  40. Boyd, S. K. (2009). Image-based finite element analysis. In Advanced imaging in biology and medicine (pp. 301–318). Springer.

    Chapter  Google Scholar 

  41. Palombini, F. L., Lautert, E. L., Mariath, J. E. A., & de Oliveira, B. F. (2020). Combining numerical models and discretizing methods in the analysis of bamboo parenchyma using finite element analysis based on X-ray microtomography. Wood Science and Technology, 54, 161–186. https://doi.org/10.1007/s00226-019-01146-4

    Article  CAS  Google Scholar 

  42. Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). The finite element method: Its basis and fundamentals (7th ed.). Butterworth-Heinemann.

    Google Scholar 

  43. Kurowski, P. M. (2004). Finite Element Analysis for design engineers. SAE International.

    Book  Google Scholar 

  44. Palombini, F. L., Nogueira, F. M., Kindlein Junior, W., et al. (2020). Biomimetic systems and design in the 3D characterization of the complex vascular system of bamboo node based on X-ray microtomography and finite element analysis. Journal of Materials Research, 35, 842–854. https://doi.org/10.1557/jmr.2019.117

    Article  CAS  Google Scholar 

  45. Nogueira, F. M., Palombini, F. L., Kuhn, S. A., et al. (2019). Heat transfer in the tank-inflorescence of Nidularium innocentii (Bromeliaceae): Experimental and finite element analysis based on X-ray microtomography. Micron, 124, 102714. https://doi.org/10.1016/j.micron.2019.102714

    Article  Google Scholar 

  46. Liese, W. (1985). Anatomy and properties of bamboo. In: Proceedings of the international bamboo workshop. Hangzhou.

    Google Scholar 

  47. Palombini, F. L., & Nogueira, F. M. (2023). Bamboo science and technology. Springer.

    Book  Google Scholar 

  48. Palombini, F. L., Oliveira, B. F., & Mariath, J. E. A. (2021). Biônica e Seleção de Materiais : Design de garrafa térmica bioinspirada na inflorescência-tanque de bromélias. In G. G. Oliveira & G. J. Z. Núñez (Eds.), Design em Pesquisa – Volume 4 (pp. 310–326). Marcavisual.

    Google Scholar 

  49. Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79, 1309–1331. https://doi.org/10.1002/nme.2579

    Article  Google Scholar 

  50. Gibson, L. J., Easterling, K. E., & Ashby, M. F. (1981). The structure and mechanics of cork. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377, 99–117. https://doi.org/10.1098/rspa.1981.0117

    Article  Google Scholar 

  51. Niklas, K. J., & Spatz, H.-C. (2012). Plant physics. University of Chicago Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Luis Palombini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schoffen, M.P., Cidade, M.K., Palombini, F.L. (2024). Bionics and Design: 3D Microstructural Characterization of Cork for the Development of Conceptual Products. In: Arruda, A.J.V., Palombini, F.L. (eds) Biomimetics, Biodesign and Bionics. Environmental Footprints and Eco-design of Products and Processes. Springer, Cham. https://doi.org/10.1007/978-3-031-51311-4_2

Download citation

Publish with us

Policies and ethics