Skip to main content

Biodesign as a Tool to Achieve Sustainable Construction Through Additive Manufacturing

  • Chapter
  • First Online:
Biomimetics, Biodesign and Bionics

Abstract

Currently, cities face the challenges of achieving net-zero emissions, sustainable resource usage, and occupational safety. Sustainable manufacturing processes (SMP) in the architecture, engineering, and construction industry (AEC) could help to master such challenges if non-digitized or insufficiently networked processes did not repeatedly hinder it. The smart combination of additive manufacturing (AM) and nature-based design (NbD) could lead to an economic breakthrough in SMP. AM quickens process fulfillment and automation, offering potential to reduce expenditures in resources, costs, and associated risks while ensuring sustainability, and if early integrated into the design, it allows defining lightweight, sustainable, and material as objectives. NbD approaches in AM for AEC lead to complex structures with superior performance, minimizing material usage, and fostering regenerative, inclusive, and climate-adapted designs that shape contemporary architecture. Thus, this chapter comprehensively reviews NbD for AM projects, analyzing (i) geometry-focused design strategies, (ii) modeling approaches with performance criteria, and (iii) challenges of implementing NbD approaches in AEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan, X., Bethers, B., Chen, H., et al. (2021). Recent advancements in biomimetic 3D printing materials with enhanced mechanical properties. Frontiers in Materials, 8.

    Google Scholar 

  2. Hershcovich, C., van Hout, R., Rinsky, V., et al. (2021). Thermal performance of sculptured tiles for building envelopes. Building and Environment, 197, 107809. https://doi.org/10.1016/j.buildenv.2021.107809

    Article  Google Scholar 

  3. Mole, M. A., Rodrigues DÁraujo, S., van Aarde, R. J., et al. (2016). Coping with heat: Behavioural and physiological responses of savanna elephants in their natural habitat. Conservation Physiology, 4, cow044. https://doi.org/10.1093/conphys/cow044

    Article  Google Scholar 

  4. Ahamed, M. K., Wang, H., & Hazell, P. J. (2022). From biology to biomimicry: Using nature to build better structures – A review. Construction and Building Materials, 320, 126195. https://doi.org/10.1016/j.conbuildmat.2021.126195

    Article  Google Scholar 

  5. Badarnah Kadri, L. (2012). Towards the LIVING envelope: Biomimetics for building envelope adaptation. Wöhrmann Print Service B.V.

    Google Scholar 

  6. Ortega Del Rosario, M. D. L. Á., Beermann, K., & Chen Austin, M. (2023). Environmentally responsive materials for building envelopes: A review on manufacturing and biomimicry-based approaches. Biomimetics, 8, 52. https://doi.org/10.3390/biomimetics8010052

    Article  Google Scholar 

  7. Savolainen, J., & Collan, M. (2020). How additive manufacturing technology changes business models? – Review of literature. Additive Manufacturing, 32, 101070. https://doi.org/10.1016/j.addma.2020.101070

    Article  Google Scholar 

  8. Song, Y., Koeck, R., & Luo, S. (2021). Review and analysis of augmented reality (AR) literature for digital fabrication in architecture. Automation in Construction, 128, 103762. https://doi.org/10.1016/j.autcon.2021.103762

    Article  Google Scholar 

  9. Dixit, S., & Stefańska, A. (2023). Bio-logic, a review on the biomimetic application in architectural and structural design. Ain Shams Engineering Journal, 14, 101822. https://doi.org/10.1016/j.asej.2022.101822

    Article  Google Scholar 

  10. Nodehi, M., Ozbakkaloglu, T., & Gholampour, A. (2022). Effect of supplementary cementitious materials on properties of 3D printed conventional and alkali-activated concrete: A review. Automation in Construction, 138, 104215. https://doi.org/10.1016/j.autcon.2022.104215

    Article  Google Scholar 

  11. Wohlers, T., & Gornet, T. (2014). History of additive manufacturing. Wohlers Associates.

    Google Scholar 

  12. Hulls, C. (1989). Priority to US06638905.

    Google Scholar 

  13. Al Rashid, A., Khan, S. A., Al-Ghamdi, S., & Koç, M. (2020). Additive manufacturing: Technology, applications, markets, and opportunities for the built environment. Automation in Construction, 118, 103268. https://doi.org/10.1016/j.autcon.2020.103268

    Article  Google Scholar 

  14. ISO/ASTM 52900:2021(en). (2021). Additive manufacturing – General principles – Fundamentals and vocabulary.

    Google Scholar 

  15. Anton, A., Reiter, L., Wangler, T., et al. (2021). A 3D concrete printing prefabrication platform for bespoke columns. Automation in Construction, 122, 103467. https://doi.org/10.1016/j.autcon.2020.103467

    Article  Google Scholar 

  16. Mohan, M. K., Rahul, A. V., De Schutter, G., & Van Tittelboom, K. (2021). Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review. Cement and Concrete Composites, 115, 103855. https://doi.org/10.1016/j.cemconcomp.2020.103855

    Article  CAS  Google Scholar 

  17. Parusheva, S., & Aleksandrova, Y. (2021). Technologies, tools, and resources - driving forces in construction sector digitalization. In: 2021 Tenth international conference on intelligent computing and information systems (ICICIS), pp. 219–223.

    Google Scholar 

  18. Al-Qutaifi, S., Nazari, A., & Bagheri, A. (2018). Mechanical properties of layered geopolymer structures applicable in concrete 3D-printing. Construction and Building Materials, 176, 690–699. https://doi.org/10.1016/j.conbuildmat.2018.04.195

    Article  CAS  Google Scholar 

  19. Agarwal, R., Chandrasekaran, S., Sridhar, M. (2016). Imagining construction’s digital future.

    Google Scholar 

  20. Lasarte, N., Elguezabal, P., Sagarna, M., et al. (2021). Challenges for digitalisation in building renovation to enhance the efficiency of the process: A Spanish case study. Sustainability, 13, 12139. https://doi.org/10.3390/su132112139

    Article  Google Scholar 

  21. Rahman, A. U., Alam, S. M., Dallasega, P., et al. (2020). Increasing control in construction processes: The role of digitalization. In O. A. Del Río, H. Leopold, & F. M. Santoro (Eds.), Business process management workshops (pp. 263–275). Springer.

    Chapter  Google Scholar 

  22. Perera, S., Jin, X., Das, P., et al. (2023). A strategic framework for digital maturity of design and construction through a systematic review and application. Journal of Industrial Information Integration, 31, 100413. https://doi.org/10.1016/j.jii.2022.100413

    Article  Google Scholar 

  23. Ashworth, A., & Perera, S. (2015). Cost studies of buildings. Routledge.

    Book  Google Scholar 

  24. Menna, C., Mata-Falcón, J., Bos, F. P., et al. (2020). Opportunities and challenges for structural engineering of digitally fabricated concrete. Cement and Concrete Research, 133, 106079. https://doi.org/10.1016/j.cemconres.2020.106079

    Article  CAS  Google Scholar 

  25. Stoyanova, M. (2020). Good practices and recommendations for success in construction digitalization. TEM J, 9, 42–47.

    Google Scholar 

  26. Mechtcherine, V., Nerella, V. N., Will, F., et al. (2019). Large-scale digital concrete construction – CONPrint3D concept for on-site, monolithic 3D-printing. Automation in Construction, 107, 102933. https://doi.org/10.1016/j.autcon.2019.102933

    Article  Google Scholar 

  27. Peshkov, A. V. (2021). Construction 4.0: Immaterial assets types in the development of design estimates for effective digitalization of building projects. IOP Conference Series: Earth and Environmental Science, 751, 012107. https://doi.org/10.1088/1755-1315/751/1/012107

    Article  Google Scholar 

  28. Lowke, D., Dini, E., Perrot, A., et al. (2018). Particle-bed 3D printing in concrete construction – Possibilities and challenges. Cement and Concrete Research, 112, 50–65. https://doi.org/10.1016/j.cemconres.2018.05.018

    Article  CAS  Google Scholar 

  29. El-Sayegh, S., Romdhane, L., & Manjikian, S. (2020). A critical review of 3D printing in construction: Benefits, challenges, and risks. Archives of Civil and Mechanical Engineering, 20, 34. https://doi.org/10.1007/s43452-020-00038-w

    Article  Google Scholar 

  30. Arango, A. M., & Acuña, L. E. (2018). La Internacionalización del currículo y su relación con las condiciones de calidad en los programas académicos de educación superior para la obtención de registro calificado. 2, 15.

    Google Scholar 

  31. Sheina, S., Chubarova, K., Dementeev, D., & Kalitkin, A. (2023). Integration of BIM and GIS Technologies for Sustainable Development of the construction industry. In A. Guda (Ed.), Networked control Systems for connected and automated vehicles (pp. 1303–1311). Springer.

    Chapter  Google Scholar 

  32. Wang, H., Du, W., & Li, S. (2022). Key issues for digital factory designing and planning: A survey. Studies in Computational Intelligence, 1012(SCI), 18–29. https://doi.org/10.1007/978-3-030-92317-4_2

    Article  Google Scholar 

  33. Benedetti, A. C., Costantino, C., Gulli, R., & Predari, G. (2022). The process of digitalization of the urban environment for the development of sustainable and circular cities: A case study of Bologna, Italy. Sustainability, 14, 13740. https://doi.org/10.3390/su142113740

    Article  Google Scholar 

  34. United Nations Environment Programme. (2021). 2021 Global status report for buildings and construction. Towards a zero-emissions, efficient and resilient buildings and construction sector. Nairobi.

    Google Scholar 

  35. Craveiro, F., Duarte, J. P., Bartolo, H., & Bartolo, P. J. (2019). Additive manufacturing as an enabling technology for digital construction: A perspective on Construction 4.0. Automation in Construction, 103, 251–267. https://doi.org/10.1016/j.autcon.2019.03.011

    Article  Google Scholar 

  36. Paolini, A., Kollmannsberger, S., & Rank, E. (2019). Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Additive Manufacturing, 30, 100894. https://doi.org/10.1016/j.addma.2019.100894

    Article  Google Scholar 

  37. Siddique, S. H., Hazell, P. J., Wang, H., et al. (2022). Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption – A review. Additive Manufacturing, 58, 103051. https://doi.org/10.1016/j.addma.2022.103051

    Article  Google Scholar 

  38. Al-Ketan, O., Rowshan, R., & Alami, A. H. (2022). Biomimetic materials for engineering applications. In A.-G. Olabi (Ed.), Encyclopedia of smart materials (pp. 25–34). Elsevier.

    Chapter  Google Scholar 

  39. Montana-Hoyos, C., Daneluzzo, M., Tchakerian, R., et al. (2022). Chapter one – biomimicry and biodesign for innovation in future space colonization. In V. Shyam, M. Eggermont, & A. F. Hepp (Eds.), Biomimicry for aerospace (pp. 3–39). Elsevier.

    Chapter  Google Scholar 

  40. Kırdök, O., Akyol Altun, D., Dahy, H., et al. (2022). Chapter 17 – Design studies and applications of mycelium biocomposites in architecture. In M. Eggermont, V. Shyam, & A. F. Hepp (Eds.), Biomimicry for materials, design and habitats (pp. 489–527). Elsevier.

    Chapter  Google Scholar 

  41. Almesmari, A., Alagha, A. N., Naji, M. M., et al. (2023). Recent advancements in design optimization of lattice-structured materials. Advanced Engineering Materials, 25, 2201780. https://doi.org/10.1002/adem.202201780

    Article  CAS  Google Scholar 

  42. International Organization for Standardization. (2015). ISO 18458:2015 Biomimetics – Terminology, concepts and methodology.

    Google Scholar 

  43. Alsuwait, R. B., Souiyah, M., Momohjimoh, I., et al. (2023). Recent development in the processing, properties, and applications of epoxy-based natural fiber polymer biocomposites. Polymers, 15, 145. https://doi.org/10.3390/polym15010145

    Article  CAS  Google Scholar 

  44. Judawisastra, H., & Refiadi, G. (2022). Permanganate treatment optimization on tensile properties and water absorption of Kenaf fiber-polypropylene biocomposites. International Journal of Automotive and Mechanical Engineering, 19, 9623–9633. https://doi.org/10.15282/ijame.19.1.2022.23.0742

    Article  CAS  Google Scholar 

  45. Abidin, N. A. Z., Mahmud, J., Manssor, N. A. S., & Abd Rahim, N. N. C. (2022). Physical and mechanical properties of bamboo-silicone biocomposites (BaSiCs). BioResources, 17, 4432–4443. https://doi.org/10.15376/biores.17.3.4432-4443

    Article  CAS  Google Scholar 

  46. Buehler, M. J. (2022). Generating 3D architectured nature-inspired materials and granular media using diffusion models based on language cues. Oxford Open Materials Science, 2, itac010. https://doi.org/10.1093/oxfmat/itac010

    Article  Google Scholar 

  47. Vellayappan, M. V., Duarte, F., Sollogoub, C., et al. (2023). Fabrication of Architectured biomaterials by multilayer co-extrusion and additive manufacturing. Advanced Functional Materials, 33, 2301547. https://doi.org/10.1002/adfm.202301547

    Article  CAS  Google Scholar 

  48. Mechtcherine, V., Bos, F. P., Perrot, A., et al. (2020). Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: A review. Cement and Concrete Research, 132. https://doi.org/10.1016/j.cemconres.2020.106037

  49. Wolfs, R. R., Bos, F., & Salet, T. T. (2018). Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. https://doi.org/10.1016/J.CEMCONRES.2018.02.001.

  50. Dielemans, G., Briels, D., Jaugstetter, F., et al. (2021). Additive manufacturing of thermally enhanced lightweight concrete wall elements with closed cellular structures. Journal of Facade Design and Engineering, 9, 59–72. https://doi.org/10.7480/jfde.2021.1.5418

    Article  Google Scholar 

  51. Ooms, T., Vantyghem, G., Van Coile, R., & De Corte, W. (2021). A parametric modelling strategy for the numerical simulation of 3D concrete printing with complex geometries. Additive Manufacturing, 38, 101743. https://doi.org/10.1016/j.addma.2020.101743

    Article  Google Scholar 

  52. Sangiorgio, V., Parisi, F., Fieni, F., & Parisi, N. (2022). The new Boundaries of 3D-printed clay bricks design: Printability of complex internal geometries. Sustainability, 14, 598. https://doi.org/10.3390/su14020598

    Article  CAS  Google Scholar 

  53. Pastore, T., Menna, C., & Asprone, D. (2022). Bézier-based biased random-key genetic algorithm to address printability constraints in the topology optimization of concrete structures. Structural and Multidisciplinary Optimization, 65. https://doi.org/10.1007/s00158-021-03119-3

  54. Wolfs, R. J. M., Salet, T. A. M., & Roussel, N. (2021). Filament geometry control in extrusion-based additive manufacturing of concrete: The good, the bad and the ugly. Cement and Concrete Research, 150, 106615. https://doi.org/10.1016/j.cemconres.2021.106615

    Article  CAS  Google Scholar 

  55. Nguyen-Van, V. (2021). Mechanical evaluations of bioinspired TPMS cellular cementitious structures manufactured by 3D printing formwork.

    Google Scholar 

  56. Leary, M. (2019). Design for additive manufacturing (1st ed.). Elsevier.

    Google Scholar 

  57. Gladysz, G. M., & Chawla, K. K. (2015). Chapter 6 – Cellular materials. In G. M. Gladysz & K. K. Chawla (Eds.), Voids in materials (pp. 103–130). Elsevier.

    Chapter  Google Scholar 

  58. Gibson, L. J., Ashby, M. F., & Harley, B. A. (2010). Cellular materials in nature and medicine. Cambridge University Press.

    Google Scholar 

  59. Pais, A. I., Belinha, J., & Alves, J. L. (2023). Advances in computational techniques for bio-inspired cellular materials in the field of biomechanics: Current trends and prospects. Materials, 16, 3946. https://doi.org/10.3390/ma16113946

    Article  CAS  Google Scholar 

  60. Yang, L., Ferrucci, M., Mertens, R., et al. (2020). An investigation into the effect of gradients on the manufacturing fidelity of triply periodic minimal surface structures with graded density fabricated by selective laser melting. Journal of Materials Processing Technology, 275, 116367. https://doi.org/10.1016/j.jmatprotec.2019.116367

    Article  Google Scholar 

  61. Cowin, S. C. (1985). The relationship between the elasticity tensor and the fabric tensor. Mechanics of Materials, 4, 137–147. https://doi.org/10.1016/0167-6636(85)90012-2

    Article  Google Scholar 

  62. Bi, M., Tran, P., Xia, L., et al. (2022). Topology optimization for 3D concrete printing with various manufacturing constraints. Additive Manufacturing, 57. https://doi.org/10.1016/j.addma.2022.102982

  63. Gan, N., & Wang, Q. (2022). Topology optimization design of porous infill structure with thermo-mechanical buckling criteria. International Journal of Mechanics and Materials in Design, 18, 267–288. https://doi.org/10.1007/s10999-021-09575-5

    Article  Google Scholar 

  64. Kontovourkis, O., Tryfonos, G., & Georgiou, C. (2020). Robotic additive manufacturing (RAM) with clay using topology optimization principles for toolpath planning: The example of a building element. Architectural Science Review, 63, 105–118. https://doi.org/10.1080/00038628.2019.1620170

    Article  Google Scholar 

  65. Tafakkori, K., Tavakkoli-Moghaddam, R., & Siadat, A. (2022). Sustainable negotiation-based nesting and scheduling in additive manufacturing systems: A case study and multi-objective meta-heuristic algorithms. Engineering Applications of Artificial Intelligence, 112, 104836. https://doi.org/10.1016/j.engappai.2022.104836

    Article  Google Scholar 

  66. Valjak, F., & Lindwall, A. (2021). Review of design heuristics and design principles in design for additive manufacturing. Proceedings of the Design Society, 1, 2571–2580. https://doi.org/10.1017/pds.2021.518

    Article  Google Scholar 

  67. Al-Ketan, O., Rowshan, R., & Abu Al-Rub, R. K. (2018). Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Additive Manufacturing, 19, 167–183. https://doi.org/10.1016/j.addma.2017.12.006

    Article  Google Scholar 

  68. Han, L., & Che, S. (2018). An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems. Advanced Materials, 30, 1705708. https://doi.org/10.1002/adma.201705708

    Article  CAS  Google Scholar 

  69. Feng, J., Fu, J., Yao, X., & He, Y. (2022). Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing, 4, 022001. https://doi.org/10.1088/2631-7990/ac5be6

    Article  Google Scholar 

  70. Michielsen, K., & De Raedt, H. (2001). Integral-geometry morphological image analysis. Physics Reports, 347, 461–538. https://doi.org/10.1016/S0370-1573(00)00106-X

    Article  CAS  Google Scholar 

  71. Yang, X., Yang, Q., Shi, Y., et al. (2022). Effect of volume fraction and unit cell size on manufacturability and compressive behaviors of Ni-Ti triply periodic minimal surface lattices. Additive Manufacturing, 54, 102737. https://doi.org/10.1016/j.addma.2022.102737

    Article  CAS  Google Scholar 

  72. Ahmed, Z., Biffi, A., Hass, L., et al. (2020). 3D concrete printing – Free form geometries with improved ductility and strength. In F. P. Bos, S. S. Lucas, R. J. M. Wolfs, & T. A. M. Salet (Eds.), Second RILEM international conference on concrete and digital fabrication (pp. 741–756). Springer.

    Chapter  Google Scholar 

  73. Nguyen-Van, V., Tran, P., Peng, C., et al. (2020). Bioinspired cellular cementitious structures for prefabricated construction: Hybrid design & performance evaluations. Automation in Construction, 119, 103324. https://doi.org/10.1016/j.autcon.2020.103324

    Article  Google Scholar 

  74. Abdallah, Y. K., & Estévez, A. T. (2021). 3D-printed biodigital clay bricks. Biomimetics, 6, 59. https://doi.org/10.3390/biomimetics6040059

    Article  CAS  Google Scholar 

  75. Patadiya, J., Wang, X., Joshi, G., et al. (2023). 3D-printed biomimetic hierarchical nacre architecture: Fracture behavior and analysis. ACS Omega, 8, 18449–18461. https://doi.org/10.1021/acsomega.2c08076

    Article  CAS  Google Scholar 

  76. Mishra, N., & Kandasubramanian, B. (2018). Biomimetic Design of Artificial Materials Inspired by iridescent nacre structure and its growth mechanism. Polymer-Plastics Technology and Engineering, 57, 1592–1606. https://doi.org/10.1080/03602559.2017.1326139

    Article  CAS  Google Scholar 

  77. Ubaid, J., Wardle, B. L., & Kumar, S. (2020). Bioinspired compliance grading motif of mortar in nacreous materials. ACS Applied Materials & Interfaces, 12, 33256–33266. https://doi.org/10.1021/acsami.0c08181

    Article  CAS  Google Scholar 

  78. Ko, K., Lee, S., Hwang, Y. K., et al. (2022). Investigation on the impact resistance of 3D printed nacre-like composites. Thin-Walled Structures, 177, 109392. https://doi.org/10.1016/j.tws.2022.109392

    Article  Google Scholar 

  79. Zhao, Z., Liu, Y., & Wang, P. (2023). Computational design of bio-inspired mechanical metamaterials based on lipidic cubic phases. JOM, 75, 2126–2136. https://doi.org/10.1007/s11837-023-05866-8

    Article  CAS  Google Scholar 

  80. Yang, R., Zaheri, A., Gao, W., et al. (2017). Exoskeletons: AFM identification of beetle exocuticle: Bouligand structure and nanofiber anisotropic elastic properties (Adv. Funct. Mater. 6/2017). Advanced Functional Materials, 27. https://doi.org/10.1002/adfm.201770031

  81. Yang, W., Sherman, V. R., Gludovatz, B., et al. (2014). Protective role of Arapaima gigas fish scales: Structure and mechanical behavior. Acta Biomaterialia, 10, 3599–3614. https://doi.org/10.1016/j.actbio.2014.04.009

    Article  Google Scholar 

  82. Suksangpanya, N., Yaraghi, N. A., Kisailus, D., & Zavattieri, P. (2017). Twisting cracks in Bouligand structures. Journal of the Mechanical Behavior of Biomedical Materials, 76, 38–57. https://doi.org/10.1016/j.jmbbm.2017.06.010

    Article  Google Scholar 

  83. Liu, J., Li, S., Fox, K., & Tran, P. (2022). 3D concrete printing of bioinspired Bouligand structure: A study on impact resistance. Additive Manufacturing, 50, 102544. https://doi.org/10.1016/j.addma.2021.102544

    Article  Google Scholar 

  84. Moini, M., Olek, J., Youngblood, J. P., et al. (2018). Additive manufacturing and performance of architectured cement-based materials. Advanced Materials, 30, 1802123. https://doi.org/10.1002/adma.201802123

    Article  CAS  Google Scholar 

  85. Nguyen-Van, V., Nguyen-Xuan, H., Panda, B., & Tran, P. (2022). 3D concrete printing modelling of thin-walled structures. Structure, 39, 496–511. https://doi.org/10.1016/j.istruc.2022.03.049

    Article  Google Scholar 

  86. Suiker, A. S. J. (2022). Effect of accelerated curing and layer deformations on structural failure during extrusion-based 3D printing. Cement and Concrete Research, 151, 106586. https://doi.org/10.1016/j.cemconres.2021.106586

    Article  CAS  Google Scholar 

  87. Ilcan, H., Sahin, O., Kul, A., et al. (2022). Rheological properties and compressive strength of construction and demolition waste-based geopolymer mortars for 3D-printing. Construction and Building Materials, 328, 127114. https://doi.org/10.1016/j.conbuildmat.2022.127114

    Article  CAS  Google Scholar 

  88. Lee, H., Jay Kim, J. H., Moon, J. H., et al. (2020). Experimental analysis on rheological properties for control of concrete extrudability. Advances in Concrete Construction, 9, 93–102. https://doi.org/10.12989/acc.2020.9.1.093

    Article  CAS  Google Scholar 

  89. Wu, Y., Liu, C., Liu, H., et al. (2021). Study on the rheology and buildability of 3D printed concrete with recycled coarse aggregates. Journal of Building Engineering, 42, 103030. https://doi.org/10.1016/j.jobe.2021.103030

    Article  Google Scholar 

  90. Cadoret, N., Chaves-Jacob, J., & Linares, J.-M. (2023). Structural additive manufacturing parts bio-inspired from trabecular bone form-function relationship. Materials and Design, 231, 112029. https://doi.org/10.1016/j.matdes.2023.112029

    Article  Google Scholar 

  91. Kladovasilakis, N., Tsongas, K., Kostavelis, I., et al. (2022). Effective mechanical properties of additive manufactured strut-lattice structures: Experimental and finite element study. Advanced Engineering Materials, 24. https://doi.org/10.1002/adem.202100879

  92. Doodi, R., & Balamurali, G. (2023). Experimental and analytical investigation of bio-inspired lattice structures under compressive loading. Engineering Research Express, 5, 035035. https://doi.org/10.1088/2631-8695/aceed1

    Article  Google Scholar 

  93. Berman, O., Weizman, M., Oren, A., et al. (2023). Design and application of a novel 3D printing method for bio-inspired artificial reefs. Ecological Engineering, 188, 106892. https://doi.org/10.1016/j.ecoleng.2023.106892

    Article  Google Scholar 

  94. Nguyen-Van, V., Choudhry, N. K., Panda, B., et al. (2022). Performance of concrete beam reinforced with 3D printed bioinspired primitive scaffold subjected to three-point bending. Automation in Construction, 134. https://doi.org/10.1016/j.autcon.2021.104060

  95. Ming, X., Huang, J. C., & Li, Z. (2022). Materials-oriented integrated design and construction of structures in civil engineering – A review. Frontiers of Structural and Civil Engineering, 16, 24–44. https://doi.org/10.1007/s11709-021-0794-9

    Article  Google Scholar 

  96. Ruusuvuori, P. (2022). Chapter 2 – Parametric modeling in biomedical image synthesis. In N. Burgos & D. Svoboda (Eds.), Biomedical image synthesis and simulation (pp. 7–21). Academic Press.

    Chapter  Google Scholar 

  97. Zhou, T., Xiong, W., Obata, Y., et al. (2022). Chapter 2 – Digital product design and engineering analysis techniques. In C. D. Patel & C.-H. Chen (Eds.), Digital manufacturing (pp. 57–96). Elsevier.

    Chapter  Google Scholar 

  98. Hoang, V.-N., Tran, P., Vu, V.-T., & Nguyen-Xuan, H. (2020). Design of lattice structures with direct multiscale topology optimization. Composite Structures, 252, 112718. https://doi.org/10.1016/j.compstruct.2020.112718

    Article  Google Scholar 

  99. Al-Ketan, O., & Abu Al-Rub, R. K. (2019). Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Advanced Engineering Materials, 21, 1900524. https://doi.org/10.1002/adem.201900524

    Article  Google Scholar 

  100. Jongerius, S. R., & Lentink, D. (2010). Structural analysis of a dragonfly wing. Experimental Mechanics, 50, 1323–1334. https://doi.org/10.1007/s11340-010-9411-x

    Article  Google Scholar 

  101. Murray, C. D. (1926). The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Sciences of the United States of America, 12, 2017–2014.

    Google Scholar 

  102. Hoffmann, J., Donoughe, S., Li, K., et al. (2018). A simple developmental model recapitulates complex insect wing venation patterns. Proceedings of the National Academy of Sciences, 115, 9905–9910. https://doi.org/10.1073/pnas.1721248115

    Article  CAS  Google Scholar 

  103. Musenich, L., Stagni, A., & Libonati, F. (2023). Hierarchical bioinspired architected materials and structures. Extreme Mechanics Letters, 58, 101945. https://doi.org/10.1016/j.eml.2022.101945

    Article  Google Scholar 

  104. Bowen, J. J., Mooraj, S., Goodman, J. A., et al. (2022). Hierarchically porous ceramics via direct writing of preceramic polymer-triblock copolymer inks. Materials Today, 58, 71–79. https://doi.org/10.1016/j.mattod.2022.07.002

    Article  CAS  Google Scholar 

  105. Mora, S., Pugno, N. M., & Misseroni, D. (2022). 3D printed architected lattice structures by material jetting. Materials Today, 59, 107–132. https://doi.org/10.1016/j.mattod.2022.05.008

    Article  Google Scholar 

  106. Lin, Y., Shi, W., Li, J., et al. (2023). Evaluation of mechanical properties of Ti–6Al–4 V BCC lattice structure with different density gradient variations prepared by L-PBF. Materials Science and Engineering A, 872, 144986. https://doi.org/10.1016/j.msea.2023.144986

    Article  CAS  Google Scholar 

  107. Yang, L., Han, C., Wu, H., et al. (2020). Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion. Journal of the Mechanical Behavior of Biomedical Materials, 109, 103843. https://doi.org/10.1016/j.jmbbm.2020.103843

    Article  CAS  Google Scholar 

  108. Du, Y., Gu, D., Xi, L., et al. (2020). Laser additive manufacturing of bio-inspired lattice structure: Forming quality, microstructure and energy absorption behavior. Materials Science and Engineering A, 773, 138857. https://doi.org/10.1016/j.msea.2019.138857

    Article  CAS  Google Scholar 

  109. Borunda, L., & Anaya, J. (2023). Hierarchical structures computational design and digital 3D printing. Journal of the International Association for Shell and Spatial Structures, 64, 5–18. https://doi.org/10.20898/j.iass.2022.015

    Article  Google Scholar 

  110. Gibson, L. J. (2003). Cellular solids. MRS Bulletin, 28, 270–274. https://doi.org/10.1557/mrs2003.79

    Article  Google Scholar 

  111. Danielli, F., Berti, F., Nespoli, A., et al. (2023). Towards the development of a custom talus prosthesis produced by SLM: Design rules and verification. Journal of Mechanical Science and Technology, 37, 1125–1130. https://doi.org/10.1007/s12206-022-2109-z

    Article  Google Scholar 

  112. Yin, S., Chen, H., Yang, R., et al. (2020). Tough nature-inspired helicoidal composites with printing-induced voids. Cell Reports Physical Science, 1, 100109. https://doi.org/10.1016/j.xcrp.2020.100109

    Article  Google Scholar 

  113. Guarín-Zapata, N., Gomez, J., Yaraghi, N., et al. (2015). Shear wave filtering in naturally-occurring Bouligand structures. Acta Biomaterialia, 23, 11–20. https://doi.org/10.1016/j.actbio.2015.04.039

    Article  Google Scholar 

  114. He, M. Y., Evans, A. G., & Hutchinson, J. W. (1994). Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses. International Journal of Solids and Structures, 31, 3443–3455. https://doi.org/10.1016/0020-7683(94)90025-6

    Article  Google Scholar 

  115. Almpani-Lekka, D., Pfeiffer, S., Schmidts, C., & Seo, S. (2021). A review on architecture with fungal biomaterials: The desired and the feasible. Fungal Biology and Biotechnology, 8, 17. https://doi.org/10.1186/s40694-021-00124-5

    Article  Google Scholar 

  116. Mohseni, A., Vieira, F. R., Pecchia, J. A., & Gürsoy, B. (2023). Three-dimensional printing of living mycelium-based composites: Material compositions, workflows, and ways to mitigate contamination. Biomimetics, 8, 257. https://doi.org/10.3390/biomimetics8020257

    Article  CAS  Google Scholar 

  117. Modanloo, B., Ghazvinian, A., Matini, M., & Andaroodi, E. (2021). Tilted arch; implementation of additive manufacturing and bio-welding of mycelium-based composites. Biomimetics, 6, 68. https://doi.org/10.3390/biomimetics6040068

    Article  CAS  Google Scholar 

  118. Soh, E., Chew, Z. Y., Saeidi, N., et al. (2020). Development of an extrudable paste to build mycelium-bound composites. Materials and Design, 195, 109058. https://doi.org/10.1016/j.matdes.2020.109058

    Article  CAS  Google Scholar 

  119. Dessi-Olive, J. (2019). Monolithic mycelium: growing vault structures. In 18th International conference on non-conventional materials and technologies “construction materials & technologies for sustainability”.

    Google Scholar 

  120. Appels, F. V. W., Camere, S., Montalti, M., et al. (2019). Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Materials and Design, 161, 64–71. https://doi.org/10.1016/j.matdes.2018.11.027

    Article  CAS  Google Scholar 

  121. Heisel, F., Schlesier, K., Lee, J., et al (2017). Design of a load-bearing mycelium structure through informed structural engineering.

    Google Scholar 

  122. Syed, S. (2017). This pavillion lives and dies through its sustainable agenda | ArchDaily. In Arch Dly. https://www.archdaily.com/878519/this-pavillion-lives-and-dies-through-its-sustainable-agenda. Accessed 17 Sep 2023.

  123. Buro Meta. (2021). Home – The growing pavilion. In Home – Grow. Pavilion. https://thegrowingpavilion.com/. Accessed 17 Sep 2023.

  124. Dessi-Olive, J. (2022). Strategies for growing large-scale mycelium structures. Biomimetics, 7, 129. https://doi.org/10.3390/biomimetics7030129

    Article  CAS  Google Scholar 

  125. Kalantari, S., & Saleh Tabari, M. H. (2017). Growmorph: Bacteria growth algorithm and design. In Proceedings of the 22nd international conference of the association for computer-aided architectural design research in Asia (CAADRIA) 2017. The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA).

    Google Scholar 

  126. Goidea, A., Floudas, D., & Andréen, D. (2020). Pulp faction: 3D printed material assemblies through microbial biotransformation. In Fabricate 2020. UCL Press.

    Google Scholar 

  127. Amarly, P., Kirzner, S., Khasi, Y., & Barath, S. (2023). Proceedings of the 28th international conference of the association for computer-aided architectural design research in Asia (CAADRIA), Hong Kong, pp. 149–158.

    Google Scholar 

  128. Armaly, P., Iliassafov, L., Kirzner, S., et al. (2023). Biologically informed design – Towards additive biofabrication with cyanobacteria. In M. Turrin, C. Andriotis, & A. Rafiee (Eds.), Computer-aided architectural design. INTERCONNECTIONS: Co-computing beyond Boundaries (pp. 425–436). Springer.

    Chapter  Google Scholar 

  129. Bhardwaj, A., Vasselli, J., Lucht, M., et al. (2020). 3D printing of biomass-fungi composite material: A preliminary study. Manufacturing Letters, 24, 96–99. https://doi.org/10.1016/j.mfglet.2020.04.005

    Article  Google Scholar 

  130. Bhardwaj, A., Rahman, A. M., Wei, X., et al. (2021). 3D printing of biomass–fungi composite material: Effects of mixture composition on print quality. Journal Of Manufacturing And Materials Processing, 5, 112. https://doi.org/10.3390/jmmp5040112

    Article  CAS  Google Scholar 

  131. Elsacker, E., Peeters, E., & De Laet, L. (2022). Large-scale robotic extrusion-based additive manufacturing with living mycelium materials. Sustainable Futures, 4, 100085. https://doi.org/10.1016/j.sftr.2022.100085

    Article  Google Scholar 

  132. Goidea, A., Floudas, D., & Andréen, D. (2022). Transcalar design: An approach to biodesign in the built environment. Infrastructures, 7, 50. https://doi.org/10.3390/infrastructures7040050

    Article  Google Scholar 

  133. Nodehi, M., Ozbakkaloglu, T., & Gholampour, A. (2022). A systematic review of bacteria-based self-healing concrete: Biomineralization, mechanical, and durability properties. Journal of Building Engineering, 49, 104038. https://doi.org/10.1016/j.jobe.2022.104038

    Article  Google Scholar 

  134. Wang, J., Ersan, Y. C., Boon, N., & De Belie, N. (2016). Application of microorganisms in concrete: A promising sustainable strategy to improve concrete durability. Applied Microbiology and Biotechnology, 100, 2993–3007. https://doi.org/10.1007/s00253-016-7370-6

    Article  CAS  Google Scholar 

  135. Qiu, J., Artier, J., Cook, S., et al. (2021). Engineering living building materials for enhanced bacterial viability and mechanical properties. iScience, 24. https://doi.org/10.1016/j.isci.2021.102083

  136. Reinhardt, O., Ihmann, S., Ahlhelm, M., & Gelinsky, M. (2023). 3D bioprinting of mineralizing cyanobacteria as novel approach for the fabrication of living building materials. Frontiers in Bioengineering and Biotechnology, 11, 1145177.

    Article  Google Scholar 

  137. Goss, D., Penick, C. A., Grishin, A., & Bhate, D. (2022). Chapter six – Bio-inspired design and additive manufacturing of cellular materials. In V. Shyam, M. Eggermont, & A. F. Hepp (Eds.), Biomimicry for aerospace (pp. 141–185). Elsevier.

    Chapter  Google Scholar 

  138. Long, O. D. A., Del Rosario M. D. L. Á. O., & Brischetto, S. (2022). Mechanical properties enhancement for additive manufactured short fiber composites with salt remelting post-processing Mejora de las propiedades mecánicas para compuestos de fibras cortas fabricados por manufactura aditiva con post-procesamiento de recocido en sal. In 2022 8th International Engineering, Sciences and Technology Conference (IESTEC), pp. 723–727.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Chen Austin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortega Del Rosario, M., Castaño, C., Chen Austin, M. (2024). Biodesign as a Tool to Achieve Sustainable Construction Through Additive Manufacturing. In: Arruda, A.J.V., Palombini, F.L. (eds) Biomimetics, Biodesign and Bionics. Environmental Footprints and Eco-design of Products and Processes. Springer, Cham. https://doi.org/10.1007/978-3-031-51311-4_10

Download citation

Publish with us

Policies and ethics