Skip to main content

Beam-Induced Motion Mechanism and Correction for Improved Cryo-Electron Microscopy and Cryo-Electron Tomography

  • Chapter
  • First Online:
Cryo-Electron Tomography

Part of the book series: Focus on Structural Biology ((FOSB,volume 11))

  • 1333 Accesses

Abstract

Beam induced motion (BIM) is a major cause of information loss in single-particle cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET). In this chapter we review the progress made in understanding the mechanism of BIM and methodologies developed to restore the information loss, in particular, in the context of cryo-ET. Observed data supports a doming model of BIM dominated by out-of-sample-plane motion and where heterogenous projections of local motions are observed. Sample tilting amplifies the apparent BIM as the out of plane motion becomes directly visible. This leads to more rapid motion at early doses as well as strong anisotropic motion in images recorded at high tilt angles. Based on the study of the BIM occurring within cryo-ET tilt series with very fine dose sampling, it was found that frozen hydrated samples, under repeated exposures, experience a “drumbeat” response, having both a repeated elastic component and a plastic deformation. The elastic deformation represents the portion that can be fully relaxed when the electron beam is turned off at the end of the exposure for each tilted image. By contrast, the plastic deformation decays exponentially with respect to the accumulated dose, causing progressive and permanent sample deformation that undermines the rigid-body hypothesis in cryo-ET. We propose that the repeated elastic component is likely due to radiolysis-induced pressure whereas the plastic deformation corresponds to sample buckling to relive stresses that can occur during freezing. In conventional cryo-EM, the elastic response is often hidden within the first frame and only the plastic response is observed. Finally, we described recent improvements in MotionCor2 to meet the need for efficient and accurate correction of the much greater anisotropic BIM in tilt image/series collected with higher frame rates for sampling the more rapid early motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 171.19
Price includes VAT (Netherlands)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 217.99
Price includes VAT (Netherlands)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tan YZ, Baldwin PR, Davis JH, Williamson JR, Potter CS, Carragher B, Lyumkis D (2017) Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat Mathods 14:793–796

    CAS  Google Scholar 

  2. McMullan G, Chen S, Henderson R, Faruqi AR (2009a) Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109:1126–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McMullan G, Clark AT, Turchetta R, Faruqi AR (2009b) Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109:1411–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McMullan G, Faruqi AR, Henderson R, Guerrini N, Turchetta R, Jacobs A, van Hoften G (2009c) Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109:1144–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li X, Mooney P, Zheng S, Booth C, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM. Nat Methods 6:584–590. https://doi.org/10.1038/nmeth.2472

    Article  CAS  Google Scholar 

  6. Henderson R, Glaeser RM (1985) Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultramicroscopy 16:139–150

    Article  CAS  Google Scholar 

  7. Russo CJ, Henderson R (2018a) Charge accumulation in electron cryomicroscopy. Ultramicroscopy 187:43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Russo CJ, Henderson R (2018b) UltraMicroscopic charge fluctuations cause minimal contrast lost in cryoEM. Ultramicroscopy 187:56–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bullough P, Henderson R (1987) Use of spot-scan procedure for recording low-dose micrographs of beam-sensitive specimens. Ultramicroscopy 21:223–230

    Article  CAS  Google Scholar 

  10. Downing KH, Glaeser R (1986) Improvement in high resolution image quality of radiation-sensitive specimens achieved with reduced spot size of the electron beam. Ultramicroscopy 20:269–278

    Article  CAS  PubMed  Google Scholar 

  11. Glaeser RM, McMullan G, Faruqi AR, Henderson R (2011) Images of paraffin monolayer crystals with perfect contrast: minimization of beam-induced specimen motion. Ultramicroscopy 111:90–100

    Article  CAS  PubMed  Google Scholar 

  12. Glaeser RM, Hall RJ (2011) Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects. Biophys J 100(10):2331–2337. https://doi.org/10.1016/j.bpj.2011.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brink J, Sherman MB, Berriman J, Chiu W (1998) Evaluation of charging on macromolecules in electron cryomicroscopy. Ultramicroscopy 72(1–2):41–52

    Article  CAS  PubMed  Google Scholar 

  14. Dove DB (1964) Image contrasts in thin carbon films observed by shadow electron microscopy. J Appl Phys 35(5):1652–1653

    Article  Google Scholar 

  15. Berriman J, Rosenthal P (2012) Paraxial charge compensator for electron cryomicroscopy. Ultramicroscopy 116:106–114. https://doi.org/10.1016/j.ultramic.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  16. Russo CJ, Passmore LA (2014) Electron microscopy: Ultrastable gold substrates for electron cryomicroscopy. Science 346(6215):1377–1380. https://doi.org/10.1126/science.1259530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177:630–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Campbell MG, Cheng A, Brilot AF, Moeller A, Lyumkis D, Veesler D, Pan DJ, Harrison SC, Potter CS, Carragher B, Grigorieff N (2012) Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20(11):1823–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Campbell MG, Veesler D, Cheng C, Potter CS, Carragher B (2015) 2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. elife 4:e06380. https://doi.org/10.7554/elife.06380

    Article  PubMed  PubMed Central  Google Scholar 

  20. Glaeser RM (2016) How good can cryo-EM become? Nat Methods 13(1):28–32. https://doi.org/10.1038/nmeth.3695

    Article  CAS  PubMed  Google Scholar 

  21. Vinothkumar KR, Henderson R (2016) Single particle electron cryomicroscopy: trends, issues and future perspective. Q Rev Biophys 49:e13. https://doi.org/10.1017/S0033583516000068

    Article  PubMed  Google Scholar 

  22. Naydenova K, Jia P, Russo CJ (2020) Electron cryomicroscopy with sub-Ångström specimen movement. Science 370(6513):223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA (2017) Motioncor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grant T, Grigorieff N (2015) Measuring the optimal exposure for single particle cryo-EM using a 2.6Å reconstruction of rotavirus VP6. elife 4:06980. https://doi.org/10.7554/eLife.06980

    Article  Google Scholar 

  25. Hayward SB, Glaeser RM (1979) Radiation damage of purple membrane at low temperature. Ultramicroscopy 4(2):201–210

    Article  CAS  Google Scholar 

  26. Bai XC, Fernandez IS, McMullan G, Scheres SHW (2013) Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. elife 2:e00461. https://doi.org/10.7554/eLife.00461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scheres SHW (2014) Beam-induced motion correction for sub-megadalton cryo-EM particles. elife 3:e03665. https://doi.org/10.7554/eLife.03665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scheres SHW (2012a) A Bayesian view on Cryo-EM structure determination. J Mol Biol 415:406–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scheres SHW (2012b) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zivanov J, Nakane T, Scheres SHW (2019) A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kimanius D, Dong L, Sharov G, Nakane T, Scheres SHW (2021) New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem J 478:4169–4185

    Article  CAS  PubMed  Google Scholar 

  32. Tegunov D, Xue L, Dienemann C, Cramer P, Mahamid J (2021) Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5Å in cells. Nat Methods 18:186–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14(3):290–296

    Article  CAS  PubMed  Google Scholar 

  34. Abrishami V, Vargas J, Li X, Cheng Y, Marabini R, Sorzano CÓS, José María Carazo JM (2015) Alignment of direct detection device micrographs using a robust optical flow approach. J Struct Biol 189:163–176

    Article  PubMed  Google Scholar 

  35. Rubinstein JL, Brubaker MA (2015) Alignment of cryo-EM movies of individual particles by optimization of image translations. J Struct Biol 192:188–195

    Article  PubMed  Google Scholar 

  36. Shigematsu H, Sigworth FJ (2013) Noise models and cryo-EM drift correction with a direct-electron camera. Ultramicroscopy 131:61–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tegunov D, Cramer P (2019) Real-time cryo–EM data pre-processing with warp. Nat Methods 16(11):1146–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de la Rosa-Trevín JM, Otón J, Marabini R, Zaldívar A, Vargas J, Carazo JM, Sorzano COS (2013) Xmipp 3.0: an improved software suite for image processing in electron microscopy. J Struct Biol 184(2):321–328. https://doi.org/10.1016/j.jsb.2013.09.015

    Article  PubMed  Google Scholar 

  39. Sorzano COS, Marabini R, Velazquez-Muriel J, Bilbao-Castro JR, Scheres SHW, Carazo JM, Pascual-Montano A (2004) XMIPP: a new generation of an open-source processing package for electron microscopy. J Struct Biol 148:194–204

    Article  CAS  PubMed  Google Scholar 

  40. Fernandez J-J, Li S, Tanmay AM, Bharat TAM, Agard DA (2018a) Cryo-tomography tilt-series alignment with consideration of the beam-induced sample motion. J Struct Biol 202:200–209

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fernandez J-J, Li S, Agard DA (2018b) Consideration of sample motion in cryo-electron tomography based upon alignment residual interpolation. J Struct Biol 205:1–6

    Article  Google Scholar 

  42. Zheng S, Wolff G, Greenan G, Chen Z, Faas FGA, Bárcena M, Koster AJ, Cheng Y, Agard DA (2022) AreTomo: an integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstruction. J Struct Biol X 6: 100068

    Google Scholar 

  43. Himes BA, Zhang P (2018) emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat Methods 15:955–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Agard .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, S., Brilot, A., Cheng, Y., Agard, D.A. (2024). Beam-Induced Motion Mechanism and Correction for Improved Cryo-Electron Microscopy and Cryo-Electron Tomography. In: Förster, F., Briegel, A. (eds) Cryo-Electron Tomography. Focus on Structural Biology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-51171-4_10

Download citation

Publish with us

Policies and ethics