Skip to main content

Automated Identification of Failure Cases in Organ at Risk Segmentation Using Distance Metrics: A Study on CT Data

  • Conference paper
  • First Online:
Image Analysis and Processing - ICIAP 2023 Workshops (ICIAP 2023)

Abstract

Automated organ at risk (OAR) segmentation is crucial for radiation therapy planning in CT scans, but the generated contours by automated models can be inaccurate, potentially leading to treatment planning issues. The reasons for these inaccuracies could be varied, such as unclear organ boundaries or inaccurate ground truth due to annotation errors. To improve the model’s performance, it is necessary to identify these failure cases during the training process and to correct them with some potential post-processing techniques. However, this process can be time-consuming, as traditionally it requires manual inspection of the predicted output. This paper proposes a method to automatically identify failure cases by setting a threshold for the combination of Dice and Hausdorff distances. This approach reduces the time-consuming task of visually inspecting predicted outputs, allowing for faster identification of failure case candidates. The method was evaluated on 20 cases of six different organs in CT images from clinical expert curated datasets. By setting the thresholds for the Dice and Hausdorff distances, the study was able to differentiate between various states of failure cases and evaluate over 12 cases visually. This thresholding approach could be extended to other organs, leading to faster identification of failure cases and thereby improving the quality of radiation therapy planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altman, M.B., et al.: A framework for automated contour quality assurance in radiation therapy including adaptive techniques. Phys. Med. Biol. 60(13), 5199 (2015)

    Article  Google Scholar 

  2. Breunig, J., et al.: A system for continual quality improvement of normal tissue delineation for radiation therapy treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 83(5), 703–708 (2012)

    Article  Google Scholar 

  3. Brouwer, C.L., et al.: 3D Variation in delineation of head and neck organs at risk. Radiat. Oncol. 7(1), 1–10 (2012)

    Article  Google Scholar 

  4. Brouwer, C.L., et al.: CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother. Oncol. 117(1), 83–90 (2015)

    Article  Google Scholar 

  5. Csapó, T.G., et al.: Optimizing the ultrasound tongue image representation for residual network-based articulatory-to-acoustic mapping. Sensors 22(22), 8601 (2022)

    Article  Google Scholar 

  6. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  7. Fung, N.T.C., et al.: Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT: time, geometrical, and dosimetric analysis. Med. Dosim. 45(1), 60–65 (2020)

    Article  Google Scholar 

  8. He, T., et al.: Multi-task learning for the segmentation of organs at risk with label dependence. Med. Image Anal. 61, 101666 (2020)

    Article  Google Scholar 

  9. Honarmandi Shandiz, A., Tóth, L.: Voice activity detection for ultrasound-based silent speech interfaces using convolutional neural networks. In: Ekštein, K., Pártl, F., Konopík, M. (eds.) TSD 2021. LNCS (LNAI), vol. 12848, pp. 499–510. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83527-9_43

    Chapter  Google Scholar 

  10. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)

    Article  Google Scholar 

  11. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7. IEEE (2020)

    Google Scholar 

  12. Karimi, D., Salcudean, S.E.: Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans. Med. Imag. 39(2), 499–513 (2019)

    Article  Google Scholar 

  13. Ma, J., et al.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021)

    Article  Google Scholar 

  14. Maiseli, B.J.: Hausdorff distance with outliers and noise resilience capabilities. SN Comput. Sci. 2(5), 358 (2021)

    Article  Google Scholar 

  15. Roth, H.R., et al.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_65

    Chapter  Google Scholar 

  16. Seff, A., et al.: 2D view aggregation for lymph node detection using a shallow hierarchy of linear classifiers. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I 17. LNCS, vol. 8673, pp. 544–552. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_68

    Chapter  Google Scholar 

  17. Seff, A., Lu, L., Barbu, A., Roth, H., Shin, H.-C., Summers, R.M.: Leveraging mid-level semantic boundary cues for automated lymph node detection. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part II 18. LNCS, vol. 9350, pp. 53–61. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_7

    Chapter  Google Scholar 

  18. Shandiz, A.H., Tóth, L., Gosztolya, G., Markó, A., Csapó, T.G.: Improving neural silent speech interface models by adversarial training. In: Hassanien, A.E., et al. (eds.) AICV 2021. AISC, vol. 1377, pp. 430–440. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76346-6_39

    Chapter  Google Scholar 

  19. Shandiz, A.H., et al.: Neural speaker embeddings for ultrasound based silent speech interfaces. arXiv preprint arXiv:2106.04552 (2021)

  20. Tóth, L., Shandiz, A.H.: 3D convolutional neural networks for ultrasound-based silent speech interfaces. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2020, Part I 19. LNCS (LNAI), vol. 12415, pp. 159–169. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61401-0_16

    Chapter  Google Scholar 

  21. Van der Heide, U.A., et al.: Functional MRI for radiotherapy dose painting. Magn. Reson. Imaging 30(9), 1216–1223 (2012)

    Article  Google Scholar 

  22. Yide, Y., Shandiz, A.H., Tóth, L.: Reconstructing speech from real-time articulatory MRI using neural vocoders. In: 2021 29th European Signal Processing Conference (EUSIPCO), pp. 945–949. IEEE (2021)

    Google Scholar 

Download references

Acknowledgments

We would like to thank all the contributors from the Deep Learning Auto Segmentation (DLAS) project for facilitating this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Honarmandi Shandiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shandiz, A.H. et al. (2024). Automated Identification of Failure Cases in Organ at Risk Segmentation Using Distance Metrics: A Study on CT Data. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14365. Springer, Cham. https://doi.org/10.1007/978-3-031-51023-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51023-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51022-9

  • Online ISBN: 978-3-031-51023-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics