Skip to main content

Optimizing Deep Learning Models for Cell Recognition in Fluorescence Microscopy: The Impact of Loss Functions on Performance and Generalization

  • Conference paper
  • First Online:
Image Analysis and Processing - ICIAP 2023 Workshops (ICIAP 2023)

Abstract

In the rapidly evolving domain of fluorescence microscopy, the application of Deep Learning techniques for automatic cell segmentation presents exciting opportunities and challenges. In this work, we investigate the impact of loss functions and evaluation metrics on model performance and generalization in the context of cell recognition.

First, we present extensive experiments with different commonly used loss functions and offer practical insights and guidelines, underscoring how the choice of a loss function can influence model performance.

Second, we conduct a detailed examination of several evaluation metrics with their relative benefits and drawbacks, helping to guide effective model evaluation and comparison in the field.

Third, we discuss how characteristics specific to fluorescence microscopy data impact model generalization. Precisely, we examine how factors such as cell sizes, color irregularities, and textures can potentially affect the performance and adaptability of these models to new data.

Collectively, these insights provide an understanding of the various facets resulting from the application of Deep Learning for automatic cell segmentation, shedding light on best practices, evaluation strategies, and model generalization. Hence, this study can serve as a beneficial resource for researchers and practitioners working on similar applications, fostering further advancements in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at: https://doi.org/10.6092/unibo/amsacta/7347 (in release).

  2. 2.

    Available at: https://github.com/clissa/fluocells-BVPAI.

  3. 3.

    By this we intend the calculation of True Positives (TP), False Positives (FP) and False Negatives (FN).

References

  1. Abraham, N., Khan, N.M.: A novel focal Tversky loss function with improved attention U-Net for lesion segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 683–687 (2019)

    Google Scholar 

  2. Bouma, H.R., et al.: Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J. Cell. Physiol. 227(4), 1285–1290 (2012)

    Article  Google Scholar 

  3. Cerri, M., et al.: Hibernation for space travel: impact on radioprotection. Life Sci. Space Res. 11, 1–9 (2016). https://doi.org/10.1016/j.lssr.2016.09.001. https://www.sciencedirect.com/science/article/pii/S2214552416300542

  4. Clissa, L., et al.: Fluorescent neuronal cells v2: multi-task, multi-format annotations for deep learning in microscopy. arXiv preprint arXiv:2307.14243 (2023, under review at Scientific Data)

  5. Clissa, L., et al.: Fluorescent neuronal cells. AMS Acta (2023). https://doi.org/10.6092/unibo/amsacta/7347

    Article  Google Scholar 

  6. Dentico, D., et al.: C-Fos expression in preoptic nuclei as a marker of sleep rebound in the rat. Eur. J. Neurosci. 30(4), 651–661 (2009). https://doi.org/10.1111/j.1460-9568.2009.06848.x

    Article  Google Scholar 

  7. Faustino, G.M., Gattass, M., Rehen, S., de Lucena, C.J.P.: Automatic embryonic stem cells detection and counting method in fluorescence microscopy images. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 799–802 (2009). https://doi.org/10.1109/ISBI.2009.5193170

  8. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks, vol. 9908, pp. 630–645, October 2016. https://doi.org/10.1007/978-3-319-46493-0_38

  9. Hitrec, T., et al.: Neural control of fasting-induced torpor in mice. Sci. Rep. 9(1) (2019). https://doi.org/10.1038/s41598-019-51841-2

  10. Hörst, F., et al.: CellViT: vision transformers for precise cell segmentation and classification. arXiv preprint arXiv:2306.15350 (2023)

  11. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7 (2020)

    Google Scholar 

  12. Kraus, O., Ba, J., Frey, B.: Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32, i52–i59 (2016). https://doi.org/10.1093/bioinformatics/btw252

  13. Kromp, F., et al.: An annotated fluorescence image dataset for training nuclear segmentation methods. Sci. Data 7(1), 262 (2020)

    Article  Google Scholar 

  14. Kumar, P.S., Sakthivel, V., Raju, M., Satya, P.: Brain tumor segmentation of the FLAIR MRI images using novel resUnet. Biomed. Signal Process. Control 82, 104586 (2023)

    Article  Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  16. Marcinkiewicz, M., Mrukwa, G.: Quantitative impact of label noise on the quality of segmentation of brain tumors on MRI scans. In: 2019 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 61–65. IEEE (2019)

    Google Scholar 

  17. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2021)

    Google Scholar 

  18. Morelli, R., et al.: Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet. Sci. Rep. 11(1), 22920 (2021). https://doi.org/10.1038/s41598-021-01929-5

    Article  MathSciNet  Google Scholar 

  19. Ouyang, C., et al.: Causality-inspired single-source domain generalization for medical image segmentation. IEEE Trans. Med. Imaging 42(4), 1095–1106 (2023). https://doi.org/10.1109/TMI.2022.3224067

    Article  Google Scholar 

  20. Pihur, V., Datta, S., Datta, S.: Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach. Bioinformatics 23(13), 1607–1615 (2007)

    Article  Google Scholar 

  21. Raza, S.e.A., Cheung, L., Epstein, D., Pelengaris, S., Khan, M., Rajpoot, N.: MIMO-Net: a multi-input multi-output convolutional neural network for cell segmentation in fluorescence microscopy images, pp. 337–340, April 2017. https://doi.org/10.1109/ISBI.2017.7950532

  22. Riccio, D., Brancati, N., Frucci, M., Gragnaniello, D.: A new unsupervised approach for segmenting and counting cells in high-throughput microscopy image sets. IEEE J. Biomed. Health Inform. PP, 1 (2018). https://doi.org/10.1109/JBHI.2018.2817485

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation, vol. 9351, pp. 234–241, October 2015

    Google Scholar 

  24. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472 (2017)

    Google Scholar 

  25. Smith, L.N.: A disciplined approach to neural network hyper-parameters: part 1-learning rate, batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820 (2018)

  26. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS 2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  27. Xie, J., Kiefel, M., Sun, M.T., Geiger, A.: Semantic instance annotation of street scenes by 3d to 2d label transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  28. Xiong, H., Lu, H., Liu, C., Liu, L., Cao, Z., Shen, C.: From open set to closed set: counting objects by spatial divide-and-conquer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8362–8371 (2019)

    Google Scholar 

  29. Zeng, Z., Xie, W., Zhang, Y., Lu, Y.: RIC-Unet: an improved neural network based on Unet for nuclei segmentation in histology images. IEEE Access 7, 21420–21428 (2019)

    Article  Google Scholar 

Download references

Funding

Research partly funded by PNRR - M4C2 - Investimento 1.3, Partenariato Esteso PE00000013 -“FAIR - Future Artificial Intelligence Research” - Spoke 8 “Pervasive AI”, funded by the European Commission under the NextGeneration EU programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Clissa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Clissa, L., Macaluso, A., Zoccoli, A. (2024). Optimizing Deep Learning Models for Cell Recognition in Fluorescence Microscopy: The Impact of Loss Functions on Performance and Generalization. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14365. Springer, Cham. https://doi.org/10.1007/978-3-031-51023-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51023-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51022-9

  • Online ISBN: 978-3-031-51023-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics