Skip to main content

Detection and Localization of Changes in Immersive Virtual Reality

  • Conference paper
  • First Online:
Image Analysis and Processing - ICIAP 2023 Workshops (ICIAP 2023)

Abstract

Immersive visualization, i.e. the presentation of stimuli, data, and information with head-mounted displays and virtual reality (VR) techniques, is nowadays common in several application contexts. For effective use of such setups, it is worth studying if the attentional mechanisms are affected (improved or worsened) in any way, or if human performances in detecting changes are similar to what happens in the real world. Here, we focus on assessing the Visual Working Memory (VWM) in VR by using a change localization task, and on developing a computational model to account for experiment outcomes. In the change localization experiment, we have four factors: set size, spatial layout, visual angle, and observation time. The results show that there is a limit of the VWM capacity around \(7\pm 2\) items, as reported in the literature. The localization precision is affected by visual angle and observation time (p\(\,<\,\)0.0001), only. The proposed model shows high agreement with the human data (r\(\,>\,\)0.91 and p\(\,<\,\)0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassano, C., Chessa, M., Solari, F.: Visual working memory in immersive visualization: a change detection experiment and an image-computable model. Virtual Reality 27, 2493–2507 (2023). https://doi.org/10.1007/s10055-023-00822-y

  2. Bays, P.M., Husain, M.: Dynamic shifts of limited working memory resources in human vision. Science 321(5890), 851–854 (2008)

    Article  Google Scholar 

  3. Brunel, N., Wang, X.J.: Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J. Comput. Neurosci. 11(1), 63–85 (2001)

    Article  Google Scholar 

  4. Cohen, M.A., Dennett, D.C., Kanwisher, N.: What is the bandwidth of perceptual experience? Trends Cogn. Sci. 20(5), 324–335 (2016)

    Article  Google Scholar 

  5. Compte, A., Brunel, N., Goldman-Rakic, P.S., Wang, X.J.: Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10(9), 910–923 (2000)

    Article  Google Scholar 

  6. Cowan, N.: Metatheory of storage capacity limits. Behav. Brain Sci. 24(1), 154–176 (2001)

    Article  Google Scholar 

  7. Cowan, N., et al.: On the capacity of attention: its estimation and its role in working memory and cognitive aptitudes. Cogn. Psychol. 51(1), 42–100 (2005)

    Article  Google Scholar 

  8. Fougnie, D., Suchow, J.W., Alvarez, G.A.: Variability in the quality of visual working memory. Nat. Commun. 3(1), 1–8 (2012)

    Article  Google Scholar 

  9. Foulsham, T., Underwood, G.: How does the purpose of inspection influence the potency of visual salience in scene perception? Perception 36(8), 1123–1138 (2007)

    Article  Google Scholar 

  10. Foulsham, T., Underwood, G.: What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. J. Vis. 8(2), 6–6 (2008)

    Article  Google Scholar 

  11. Franconeri, S.L., Alvarez, G.A., Enns, J.T.: How many locations can be selected at once? J. Exp. Psychol. Hum. Percept. Perform. 33(5), 1003 (2007)

    Article  Google Scholar 

  12. Gras, D., Gyselinck, V., Perrussel, M., Orriols, E., Piolino, P.: The role of working memory components and visuospatial abilities in route learning within a virtual environment. J. Cogn. Psychol. 25(1), 38–50 (2013)

    Article  Google Scholar 

  13. Jaiswal, N., Ray, W., Slobounov, S.: Encoding of visual-spatial information in working memory requires more cerebral efforts than retrieval: evidence from an EEG and virtual reality study. Brain Res. 1347, 80–89 (2010)

    Article  Google Scholar 

  14. Kristjánsson, Á., Draschkow, D.: Keeping it real: looking beyond capacity limits in visual cognition. Attent. Percept. Psychophys. 83(4), 1375–1390 (2021)

    Article  Google Scholar 

  15. Li, C.L., Aivar, M.P., Tong, M.H., Hayhoe, M.M.: Memory shapes visual search strategies in large-scale environments. Sci. Rep. 8(1), 1–11 (2018)

    Google Scholar 

  16. Luck, S.J., Vogel, E.K.: The capacity of visual working memory for features and conjunctions. Nature 390(6657), 279 (1997)

    Article  Google Scholar 

  17. Ma, W.J., Husain, M., Bays, P.M.: Changing concepts of working memory. Nat. Neurosci. 17(3), 347–356 (2014)

    Article  Google Scholar 

  18. Maiello, G., Chessa, M., Bex, P.J., Solari, F.: Near-optimal combination of disparity across a log-polar scaled visual field. PLoS Comput. Biol. 16(4), e1007699 (2020)

    Article  Google Scholar 

  19. Matzen, L.E., Haass, M.J., Divis, K.M., Wang, Z., Wilson, A.T.: Data visualization saliency model: a tool for evaluating abstract data visualizations. IEEE Trans. Visual Comput. Graphics 24(1), 563–573 (2017)

    Article  Google Scholar 

  20. Meilinger, T., Knauff, M., Bülthoff, H.H.: Working memory in wayfinding - a dual task experiment in a virtual city. Cogn. Sci. 32(4), 755–770 (2008)

    Article  Google Scholar 

  21. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81 (1956)

    Article  Google Scholar 

  22. Polatsek, P., Waldner, M., Viola, I., Kapec, P., Benesova, W.: Exploring visual attention and saliency modeling for task-based visual analysis. Comput. Graph. 72, 26–38 (2018)

    Article  Google Scholar 

  23. Rensink, R.A.: Change blindness. In: Neurobiology of attention, pp. 76–81. Elsevier (2005)

    Google Scholar 

  24. Seinfeld, S., Feuchtner, T., Pinzek, J., Müller, J.: Impact of information placement and user representations in VR on performance and embodiment. IEEE Trans. Visual. Comput. Graph. 1–13 (2020)

    Google Scholar 

  25. Sitzmann, V., et al.: Saliency in VR: how do people explore virtual environments? IEEE Trans. Visual Comput. Graphics 24(4), 1633–1642 (2018)

    Article  Google Scholar 

  26. Stirk, J.A., Underwood, G.: Low-level visual saliency does not predict change detection in natural scenes. J. Vis. 7(10), 3–3 (2007)

    Article  Google Scholar 

  27. Underwood, G., Foulsham, T.: Visual saliency and semantic incongruency influence eye movements when inspecting pictures. Q. J. Exp. Psychol. 59(11), 1931–1949 (2006)

    Article  Google Scholar 

  28. Wloka, C., et al.: Smiler: saliency model implementation library for experimental research. arXiv preprint arXiv:1812.08848 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Solari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chessa, M., Bassano, C., Solari, F. (2024). Detection and Localization of Changes in Immersive Virtual Reality. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing - ICIAP 2023 Workshops. ICIAP 2023. Lecture Notes in Computer Science, vol 14365. Springer, Cham. https://doi.org/10.1007/978-3-031-51023-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51023-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51022-9

  • Online ISBN: 978-3-031-51023-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics