Skip to main content

Early Prediction of At-Risk Students in Higher Education Institutions Using Adaptive Dwarf Mongoose Optimization Enabled Deep Learning

  • Conference paper
  • First Online:
Computational Sciences and Sustainable Technologies (ICCSST 2023)

Abstract

The biggest problem with online learning nowadays is that students aren’t motivated to finish their coursework and other assignments. As a result, their performance suffers, which raises the dropout rate, necessitating the need for proactive measures to manage the dropout. Predictions of student performance assist in selecting the best programmers and designing efficient study schedules that are suited to their needs. Additionally, it aids in the development of observation and support tactics for students who require assistance in order to finish the course work by teachers and educational institutions. This paper proposed an efficient method using Adaptive Dwarf Mongoose Optimization (ADMOA)-based Deep Neuro Fuzzy Network (DNFN) for prediction of at-risk students in higher education institutions. Here, DNFN is working to forecast at-risk kids and prediction is carried out based on the most pertinent features collected utilizing the created ADMOA algorithm. Additionally, the effectiveness of the proposed ADMOA_DNFN is examined in light of a number of characteristics, including Root MSE (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE) and Mean Absoulte Percentage Error (MAPE), it attains best values of 0.049, 0.045, 0.212, and 0.022 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azcona, D., Hsiao, I.H., Smeaton, A.F.: Detecting students-at-risk in computer programming classes with learning analytics from students’ digital footprints. User Model. User-Adap. Inter. 29(4), 759–788 (2019)

    Article  Google Scholar 

  2. He, Y., et al.: Online at-risk student identification using RNN-GRU joint neural networks. Information 11(10), 474 (2020)

    Article  Google Scholar 

  3. Dien, T.T., Luu, S.H., Thanh-Hai, N., Thai-Nghe, N.: Deep learning with data transformation and factor analysis for student performance prediction. Int. J. Adv. Comput. Sci. Appl. 11(8) (2020)

    Google Scholar 

  4. Yang, Z., Yang, J., Rice, K., Hung, J.L., Du, X.: Using convolutional neural network to recognize learning images for early warning of at-risk students. IEEE Trans. Learn. Technol. 13(3), 617–630 (2020)

    Article  Google Scholar 

  5. Rastrollo-Guerrero, J.L., Gómez-Pulido, J.A., Durán-Domínguez, A.: Analyzing and predicting students’ performance by means of machine learning: a review. Appl. Sci. 10(3), 1042 (2020)

    Article  Google Scholar 

  6. Shahiri, A.M., Husain, W.: A review on predicting student’s performance using data mining techniques. Procedia Comput. Sci. 72, 414–422 (2015)

    Article  Google Scholar 

  7. Karimi, H., Huang, J., Derr, T.: A deep model for predicting online course performance. CseMsu Educ. 192, 302 (2014)

    Google Scholar 

  8. Silveira, P.D.N., Cury, D., Menezes, C., dos Santos, O.L.: Analysis of classifiers in a predictive model of academic success or failure for institutional and trace data. In: 2019 IEEE Frontiers in Education Conference, FIE, pp. 1–8 (2019)

    Google Scholar 

  9. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: ICML 689–696 (2011)

    Google Scholar 

  10. Aldosari, F., Abualigah, L., Almotairi, K.H.: A normal distributed dwarf mongoose optimization algorithm for global optimization and data clustering applications. Symmetry 14(5), 1021 (2022)

    Article  Google Scholar 

  11. Othman, S.A., Ali, H.T.M.: Improvement of the nonparametric estimation of functional stationary time series using yeo-johnson transformation with application to temperature curves. Adv. Math. Phys. 1–6 (2021)

    Google Scholar 

  12. Deng, Y., Ren, Z., Kong, Y., Bao, F., Dai, Q.: A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans. Fuzzy Syst. 25(4), 1006–1012 (2016)

    Article  Google Scholar 

  13. Hung, J.L., Wang, M.C., Wang, S., Abdelrasoul, M., Li, Y., He, W.: Identifying at-risk students for early interventions—a time-series clustering approach. IEEE Trans. Emerg. Top. Comput. 5(1), 45–55 (2015)

    Article  Google Scholar 

  14. Baker, R.S., Lindrum, D., Lindrum, M.J., Perkowski, D.: Analyzing early at-risk factors in higher education E-learning courses. Int. Educ. Data Min. Soc. (2015)

    Google Scholar 

  15. Tsiotas, G.: On the use of non-linear transformations in Stochastic Volatility models. Stat. Methods Appl. 18(4), 555–583 (2009)

    Article  MathSciNet  Google Scholar 

  16. The dataset. https://archive.ics.uci.edu/ml/datasets/Higher+Education+Students+Performance+Evaluation+Dataset. Assessed November 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vijaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vijaya, P., Rajendran, R., Kumar, B., Mani, J. (2024). Early Prediction of At-Risk Students in Higher Education Institutions Using Adaptive Dwarf Mongoose Optimization Enabled Deep Learning. In: Aurelia, S., J., C., Immanuel, A., Mani, J., Padmanabha, V. (eds) Computational Sciences and Sustainable Technologies. ICCSST 2023. Communications in Computer and Information Science, vol 1973. Springer, Cham. https://doi.org/10.1007/978-3-031-50993-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50993-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50992-6

  • Online ISBN: 978-3-031-50993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics