Skip to main content

Efficient Object Detection Model for Edge Devices

  • Conference paper
  • First Online:
Advanced Engineering, Technology and Applications (ICAETA 2023)

Abstract

Deep learning-based object detection methods demonstrated promising results. In reality, most methods suffer while running on edge devices due to their extensive network architecture and low inference speed. Additionally, there is a lack of industrial scenarios in the existing person, helmet, and head detection datasets. This research presents an efficient tiny network (ETN) for object detection that can perform on edge devices with high inference speed. We take the YOLOv5s model as our base model. We compress the YOLOv5s object detection model and minimize the computation redundancy, and propose two lightweight C3 modules (MC3 and SC3). Additionally, we construct two novel datasets: H2 (consists of safety helmet and head) and Person104K (consists of person) that fill the gaps in the earlier datasets with various industrial scenarios. We implemented and tested our method on Person104K and H2 datasets and achieved about 50.6% higher inference speed than the original YOLOv5s without compromising the accuracy. On the Nvidia Jetson AGX edge device, ETN achieves 42% higher FPS compared to the original YOLOv5s. Code is available at https://github.com/mdhosen/ETN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarap, A.F.: Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375 (2018)

  2. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  3. Clevert, D.A., Unterthiner, T., Hochreiter, S.: zheng2020distance and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

  4. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 107, 3–11 (2018)

    Article  Google Scholar 

  5. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  7. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  9. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  10. Jha, S., Seo, C., Yang, E., Joshi, G.P.: Real time object detection and tracking system for video surveillance system. Multimed. Tools Appl. 80(3), 3981–3996 (2021)

    Article  Google Scholar 

  11. Jocher, G.: ultralytics/yolov5: v6.0 – YOLOv5n Nano models, Roboflow integration, TensorFlow export, OpenCV DNN support, October 2021. https://doi.org/10.5281/zenodo.5563715

  12. Jung, H.K., Choi, G.S.: Improved YOLOv5: efficient object detection using drone images under various conditions. Appl. Sci. 12(14), 7255 (2022)

    Article  Google Scholar 

  13. Köksal, A., Tuzcuoğlu, Ö., İnce, K.G., Ataseven, Y., Alatan, A.A.: Improved hard example mining approach for single shot object detectors. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 3536–3540. IEEE (2022)

    Google Scholar 

  14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  16. Ma, N., Zhang, X., Liu, M., Sun, J.: Activate or not: learning customized activation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8032–8042 (2021)

    Google Scholar 

  17. Muniswamaiah, M., Agerwala, T., Tappert, C.C.: A survey on cloudlets, mobile edge, and fog computing. In: 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), pp. 139–142. IEEE (2021)

    Google Scholar 

  18. Qiu, S., Xu, X., Cai, B.: FReLU: flexible rectified linear units for improving convolutional neural networks. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1223–1228. IEEE (2018)

    Google Scholar 

  19. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  21. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: CSPNet: a new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391 (2020)

    Google Scholar 

  22. Yu, X., Gong, Y., Jiang, N., Ye, Q., Han, Z.: Scale match for tiny person detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1257–1265 (2020)

    Google Scholar 

  23. Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: VarifocalNet: an IoU-aware dense object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8514–8523 (2021)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Cozum Makina Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Imani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imani, H., Hosen, M.I., Feryad, V., Akyol, A. (2024). Efficient Object Detection Model for Edge Devices. In: Ortis, A., Hameed, A.A., Jamil, A. (eds) Advanced Engineering, Technology and Applications. ICAETA 2023. Communications in Computer and Information Science, vol 1983. Springer, Cham. https://doi.org/10.1007/978-3-031-50920-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50920-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50919-3

  • Online ISBN: 978-3-031-50920-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics