Skip to main content

A Computer Presentation of the Analytical and Numerical Study of Nonlinear Vibration Response for Porous Functionally Graded Cylindrical Panel

  • Conference paper
  • First Online:
Advanced Engineering, Technology and Applications (ICAETA 2023)

Abstract

The current study uses a new analytical model and numerical method to present a study of free vibration carried out on a cylindrical shell panel that is simply supported and functionally graded. It is anticipated that the FG thickness attributes will be dependent on the porosity level and will change along the thickness axis in accordance with a distribution that follows a power-law. This work makes a contribution by analyzing the performance of porous FGMs, which are employed in a particularly wide variety of biomedical applications. For the purpose of determining the free vibration characteristics as well as the nonlinear vibration response, the governing equations are constructed on a first-order shear deformation theory by utilizing the Galerkin technique with the fourth-order Runge Kutta a close encounter with an incomplete FGM cylindrical shell panel and include different parameters. Parameters included are the power-law index, graded distributions of porosity, and FG thickness. With the help of both the ANSYS 2021-R1 software, a numerical investigation was carried out making use of the finite element approach, and a modal investigation was carried out. This was done in order to verify the analytical strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ninh, D.G., Ha, N.H., Long, N.T., Tan, N.C., Tien, N.D., Dao, D.V.: Thermal vibrations of complex-generatrix shells made of sandwich CNTRC sheets on both sides and open/closed cellular functionally graded porous core. Thin-Walled Struct. 182 (2023). https://doi.org/10.1016/j.tws.2022.110161

  2. Yang, Z., et al.: Dynamic buckling of rotationally restrained FG porous arches reinforced with graphene nanoplatelets under a uniform step load. Thin-Walled Struct. 166 (2021). https://doi.org/10.1016/j.tws.2021.108103

  3. Viet Hoang, V.N., Tien, N.D., Ninh, D.G., Thang, V.T., Truong, D.V.: Nonlinear dynamics of functionally graded graphene nanoplatelet reinforced polymer doubly-curved shallow shells resting on elastic foundation using a micromechanical model. J. Sandw. Struct. Mater. 23(7), 3250–3279 (2021). https://doi.org/10.1177/1099636220926650

  4. Njim, E., Bakhi, S., Al-Waily, M.: Experimental and numerical flexural properties of sandwich structure with functionally graded porous materials. Eng. Technol. J. 40(1), 137–147 (2022). https://doi.org/10.30684/etj.v40i1.2184

    Article  Google Scholar 

  5. Mouthanna, A., Bakhy, S.H., Al-Waily, M.: Frequency of non-linear dynamic response of a porous functionally graded cylindrical panels. J. Teknol. 84(6), 59–68 (2022). https://doi.org/10.11113/jurnalteknologi.v84.18422

    Article  Google Scholar 

  6. Mouthanna, A., Bakhy, S.H., Al-Waily, M.: Analytical investigation of nonlinear free vibration of porous eccentrically stiffened functionally graded sandwich cylindrical shell panels. Iran. J. Sci. Technol. Trans. Mech. Eng. (2022). https://doi.org/10.1007/s40997-022-00555-4

  7. Bagheri, H., Eslami, M.R., Kiani, Y.: Geometrically nonlinear response of FGM joined conical–conical shells subjected to thermal shock. Thin-Walled Struct. 182 (2023). https://doi.org/10.1016/j.tws.2022.110171

  8. Zhu, C.S., Fang, X.Q., Liu, J.X.: Relationship between nonlinear free vibration behavior and nonlinear forced vibration behavior of viscoelastic plates. Commun. Nonlinear Sci. Numer. Simul. 117 (2023). https://doi.org/10.1016/j.cnsns.2022.106926

  9. Li, Y.S., Liu, B.L.: Thermal buckling and free vibration of viscoelastic functionally graded sandwich shells with tunable auxetic honeycomb core. Appl. Math. Model. 108, 685–700 (2022). https://doi.org/10.1016/j.apm.2022.04.019

    Article  MathSciNet  Google Scholar 

  10. Singh, A., Naskar, S., Kumari, P., Mukhopadhyay, T.: Viscoelastic free vibration analysis of in-plane functionally graded orthotropic plates integrated with piezoelectric sensors: time-dependent 3D analytical solutions. Mech. Syst. Signal Process. 184 (2023). https://doi.org/10.1016/j.ymssp.2022.109636

  11. Sahu, N.K., Biswal, D.K., Joseph, S.V., Mohanty, S.C.: Vibration and damping analysis of doubly curved viscoelastic-FGM sandwich shell structures using FOSDT. Structures 26, 24–38 (2020). https://doi.org/10.1016/j.istruc.2020.04.007

  12. Hung, D.X., Tu, T.M., Van Long, N., Anh, P.H.: Nonlinear buckling and postbuckling of FG porous variable thickness toroidal shell segments surrounded by elastic foundation subjected to compressive loads. Aerosp. Sci. Technol. 107 (2020). https://doi.org/10.1016/j.ast.2020.106253

  13. Ninh, D.G., Bich, D.H.: Nonlinear buckling of eccentrically stiffened functionally graded toroidal shell segments under torsional load surrounded by elastic foundation in thermal environment. Mech. Res. Commun. 72, 1–15 (2016). https://doi.org/10.1016/j.mechrescom.2015.12.002

    Article  Google Scholar 

  14. Ghobadi, A., Tadi Beni, Y., Kamil Żur, K.: Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon. Compos. Struct. 259 (2021). https://doi.org/10.1016/j.compstruct.2020.113220

  15. Esayas, L.S., Kattimani, S.: Effect of porosity on active damping of geometrically nonlinear vibrations of a functionally graded magneto-electro-elastic plate. Def. Technol. 18(6), 891–906 (2022). https://doi.org/10.1016/j.dt.2021.04.016

    Article  Google Scholar 

  16. Soleimani-Javid, Z., Arshid, E., Amir, S., Bodaghi, M.: On the higher-order thermal vibrations of FG saturated porous cylindrical micro-shells integrated with nanocomposite skins in viscoelastic medium. Def. Technol. 18(8), 1416–1434 (2022). https://doi.org/10.1016/j.dt.2021.07.007

    Article  Google Scholar 

  17. Keleshteri, M.M., Jelovica, J.: Analytical solution for vibration and buckling of cylindrical sandwich panels with improved FG metal foam core. Eng. Struct. 266 (2022). https://doi.org/10.1016/j.engstruct.2022.114580

  18. HS, N.K., Kattimani, S., Nguyen-Thoi, T.: Influence of porosity distribution on nonlinear free vibration and transient responses of porous functionally graded skew plates. Def. Technol. 17(6), 1918–1935 (2021). https://doi.org/10.1016/j.dt.2021.02.003

  19. Srikarun, B., Songsuwan, W., Wattanasakulpong, N.: Linear and nonlinear static bending of sandwich beams with functionally graded porous core under different distributed loads. Compos. Struct. 276 (2021). https://doi.org/10.1016/j.compstruct.2021.114538

  20. Chan, D.Q., van Thanh, N., Khoa, N.D., Duc, N.D.: Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments. Thin-Walled Struct. 154 (2020). https://doi.org/10.1016/j.tws.2020.106837

  21. Moradi-Dastjerdi, R., Behdinan, K.: Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers. Appl. Math. Model. 96, 66–79 (2021). https://doi.org/10.1016/j.apm.2021.03.013

    Article  MathSciNet  Google Scholar 

  22. Yadav, A., Amabili, M., Panda, S.K., Dey, T.: Nonlinear analysis of cylindrical sandwich shells with porous core and CNT reinforced face-sheets by higher-order thickness and shear deformation theory. Eur. J. Mech. A/Solids 90 (2021). https://doi.org/10.1016/j.euromechsol.2021.104366

  23. Binh, C.T., Van Long, N., Tu, T.M., Minh, P.Q.: Nonlinear vibration of functionally graded porous variable thickness toroidal shell segments surrounded by elastic medium including the thermal effect. Compos. Struct. 255 (2021). https://doi.org/10.1016/j.compstruct.2020.112891

  24. Yaghoobi, H., Taheri, F.: Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos. Struct. 252 (2020). https://doi.org/10.1016/j.compstruct.2020.112700

  25. Heshmati, M., Jalali, S.K.: Effect of radially graded porosity on the free vibration behavior of circular and annular sandwich plates. Eur. J. Mech. A/Solids 74, 417–430 (2019). https://doi.org/10.1016/j.euromechsol.2018.12.009

    Article  MathSciNet  Google Scholar 

  26. Babaei, M., Hajmohammad, M.H., Asemi, K.: Natural frequency and dynamic analyses of functionally graded saturated porous annular sector plate and cylindrical panel based on 3D elasticity. Aerosp. Sci. Technol. 96 (2020). https://doi.org/10.1016/j.ast.2019.105524

  27. Li, H., Hao, Y.X., Zhang, W., Liu, L.T., Yang, S.W., Wang, D.M.: Vibration analysis of porous metal foam truncated conical shells with general boundary conditions using GDQ. Compos. Struct. 269 (2021). https://doi.org/10.1016/j.compstruct.2021.114036

  28. van Vinh, P., Huy, L.Q.: Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory. Def. Technol. 18(3), 490–508 (2022). https://doi.org/10.1016/j.dt.2021.03.006

    Article  Google Scholar 

  29. Amir, M., Talha, M.: Nonlinear vibration characteristics of shear deformable functionally graded curved panels with porosity including temperature effects. Int. J. Press. Vessel. Pip. 172, 28–41 (2019)

    Google Scholar 

  30. Keleshteri, M.M., Jelovica, J.: Analytical assessment of nonlinear forced vibration of functionally graded porous higher order hinged beams. Compos. Struct. 298 (2022). https://doi.org/10.1016/j.compstruct.2022.115994

  31. Liu, Y., Qin, Z., Chu, F.: Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. Int. J. Mech. Sci. 201 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106474

  32. Quan, T.Q., Ha, D.T.T., Duc, N.D.: Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading. Thin-Walled Struct. 170 (2022). https://doi.org/10.1016/j.tws.2021.108606

  33. Zhou, K., Huang, X., Tian, J., Hua, H.: Vibration and flutter analysis of supersonic porous functionally graded material plates with temperature gradient and resting on elastic foundation. Compos. Struct. 204, 63–79 (2018). https://doi.org/10.1016/j.compstruct.2018.07.057

    Article  Google Scholar 

  34. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R.: An analytical solution for bending, buckling and vibration responses of FGM sandwich plates. J. Sandw. Struct. Mater. 21(2), 727–757 (2019). https://doi.org/10.1177/1099636217698443

  35. Rao, S.S.: The finite element method in engineering. Elsevier (2004)

    Google Scholar 

  36. Njim, E.K., Bakhy, S.H., Al-Waily, M.: Analytical and numerical investigation of buckling load of functionally graded materials with porous metal of sandwich plate. Mater Today Proc (2021). https://doi.org/10.1016/j.matpr.2021.03.557

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mouthanna .

Editor information

Editors and Affiliations

Appendix

Appendix

$$ \begin{aligned} & I_{10} = \frac{{E_{1} }}{{1 - \upsilon^{2} }},I_{20} = \frac{{\upsilon E_{1} }}{{1 - \upsilon^{2} }},I_{30} = \frac{{E_{1} }}{{2\left( {1 + \upsilon } \right)}},I_{11} = \frac{{E_{2} }}{{1 - \upsilon^{2} }},I_{21} = \frac{{\upsilon E_{2} }}{{1 - \upsilon^{2} }},I_{31} = \frac{{E_{2} }}{{2\left( {1 + \upsilon } \right)}}, \\ & I_{12} = \frac{{E_{3} }}{{1 - \upsilon^{2} }},I_{22} = \frac{{\upsilon E_{3} }}{{1 - \upsilon^{2} }},I_{32} = \frac{{E_{3} }}{{2\left( {1 + \upsilon } \right)}}, \\ & A_{11} = \frac{1}{\Delta }I_{10} ,A_{22} = \frac{1}{\Delta }I_{10} ,A_{12} = \frac{{I_{20} }}{\Delta },A_{66} = \frac{1}{{I_{30} }},\Delta = I_{10}^{2} - I_{20}^{2} ,B_{11} = A_{22} I_{11} - A_{12} I_{21} ,B_{22} = A_{11} I_{11} - A_{12} I_{21} , \\ & B_{12} = A_{22} I_{21} - A_{12} I_{11} ,B_{21} = A_{11} I_{21} - A_{12} I_{11} ,B_{66} = \frac{{I_{31} }}{{I_{30} }},D_{11} = I_{12} - B_{11} B_{12} - I_{21} B_{21} ,D_{22} = I_{22} - B_{22} I_{11} - I_{21} B_{12} , \\ & D_{12} = I_{22} - B_{12} I_{11} - I_{21} B_{22} ,D_{21} = I_{22} - B_{21} I_{11} - I_{21} B_{11} ,D_{66} = I_{32} - I_{31} B_{66} , \\ & {\text{ T}}_{11} \left( w \right) = K_{s} I_{30} \frac{{\partial^{2} w}}{{\partial x^{2} }} + K_{s} I_{30} \frac{{\partial^{2} w}}{{\partial y^{2} }},{ T}_{12} \left( {\phi_{x} } \right) = K_{s} I_{30} \frac{{\partial \phi_{x} }}{\partial x}, \\ & {\text{ T}}_{13} \left( {\phi_{y} } \right) = K_{s} I_{30} \frac{{\partial \phi_{y} }}{\partial y},R_{1} \left( {w,f} \right) = \frac{{\partial^{2} f}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial x^{2} }} - 2\frac{{\partial^{2} f}}{\partial x\partial y}\frac{{\partial^{2} w}}{\partial x\partial y} + \frac{{\partial^{2} f}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }} + \frac{1}{R}\frac{{\partial^{2} f}}{{\partial x^{2} }}, \\ & {\text{ T}}_{21} \left( w \right) = - K_{s} I_{30} \frac{\partial w}{{\partial x}},{ T}_{22} \left( {\phi_{x} } \right) = D_{11} \frac{{\partial^{2} \phi_{x} }}{{\partial x^{2} }} + D_{66} \frac{{\partial^{2} \phi_{y} }}{{\partial y^{2} }} - K_{s} I_{30} \phi_{x} ,{\text{ T}}_{23} \left( {\phi_{y} } \right) = \left( {D_{12} + D_{66} } \right)\frac{{\partial^{2} \phi_{y} }}{\partial x\partial y}, \\ & R_{2} \left( f \right) = B_{21} \frac{{\partial^{3} f}}{{\partial x^{3} }} + \left( {B_{11} - B_{66} } \right)\frac{{\partial^{3} f}}{{\partial x\partial y^{2} }},{\text{ T}}_{31} \left( w \right) = - K_{s} I_{30} \frac{\partial w}{{\partial y}},{\text{ T}}_{32} \left( {\phi_{x} } \right) = \left( {D_{21} + D_{66} } \right)\frac{{\partial^{2} \phi_{x} }}{\partial x\partial y}, \\ & {\text{ T}}_{33} \left( {\phi_{y} } \right) = D_{22} \frac{{\partial^{2} \phi_{y} }}{{\partial y^{2} }} + D_{66} \frac{{\partial^{2} \phi_{y} }}{{\partial x^{2} }} - K_{s} I_{30} \phi_{y} ,R_{3} \left( f \right) = B_{12} \frac{{\partial^{3} f}}{{\partial y^{3} }} + \left( {B_{22} - B_{66} } \right)\frac{{\partial^{3} f}}{{\partial x^{2} \partial y}}, \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mouthanna, A., Bakhy, S.H., Al-Waily, M. (2024). A Computer Presentation of the Analytical and Numerical Study of Nonlinear Vibration Response for Porous Functionally Graded Cylindrical Panel. In: Ortis, A., Hameed, A.A., Jamil, A. (eds) Advanced Engineering, Technology and Applications. ICAETA 2023. Communications in Computer and Information Science, vol 1983. Springer, Cham. https://doi.org/10.1007/978-3-031-50920-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50920-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50919-3

  • Online ISBN: 978-3-031-50920-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics