Skip to main content

Prediction of On-Road CO2 Emission in Urban Area Using State-of-The-Art Ensemble Machine Learning Model

  • Chapter
  • First Online:
Advances in Geoinformatics Technologies

Part of the book series: Earth and Environmental Sciences Library ((EESL))

  • 79 Accesses

Abstract

Transportation emissions, including carbon dioxide (CO2), nitrogen oxides (NOx), carbon monoxide (CO), and particulate matter (PM), are a significant contributor to air pollution and greenhouse gas emissions. In urbanizing cities, poor air quality due to transportation emissions, especially CO2 from vehicles, is a considerable challenge. CO2 is a greenhouse gas contributing to climate change and global temperature rise. Therefore, it is critical to figure out CO2 emissions from transportation. Travel activity data must be collected throughout time and space for emissions connected to traffic to develop temporal CO2 emission prediction models. However, emission prediction research from on-road vehicle fleets is limited, particularly in developing countries such as Malaysia. Therefore, a new modeling approach using ensemble machine learning techniques is proposed in this study, which combines lab-tested and fieldwork data collection to estimate CO2 emissions at a finer geographical scale. The approach aims to uncover dynamic vehicle behavior and CO2 predictions in Klang Valley urban city by identifying patterns in vehicle activities in road networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abas MA, Abidin S (2018) Development of Malaysian urban drive cycle using vehicle and engine parameters. Transp Res Part D: Transp Environ 63:388–403. https://doi.org/10.1016/j.trd.2018.05.015

    Article  Google Scholar 

  2. Azeez O, Pradhan B, Shafri H, Shukla N, Lee C-W, Rizeei H (2019) Modeling of CO emissions from traffic vehicles using artificial neural networks. Applied Sciences 9(2). https://doi.org/10.3390/app9020313

  3. Azmi M, Tokai A (2016) System dynamic modeling of CO2 emissions and pollutants from passenger cars in Malaysia, 2040. Environ Syst Decis 36(4):335–350. https://doi.org/10.1007/s10669-016-9612-7

    Article  Google Scholar 

  4. Cai J, Xu K, Zhu Y, Hu F, Li L (2020) Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest. Applied Energy 262. https://doi.org/10.1016/j.apenergy.2020.114566

  5. Dahiya N, Saini B, Chalak HD (2021) Gradient boosting-based regression modelling for estimating the time period of the irregular precast concrete structural system with cross bracing. J King Saud University—Engineering Sci. https://doi.org/10.1016/j.jksues.2021.08.004

    Article  Google Scholar 

  6. Dissanayake M, Nguyen H, Poologanathan K, Perampalam G, Upasiri I, Rajanayagam H, Suntharalingam T (2022) Prediction of shear capacity of steel channel sections using machine learning algorithms. Thin-Walled Structures 175:109152

    Article  Google Scholar 

  7. Fameli KM, Assimakopoulos VD (2015) Development of a road transport emission inventory for Greece and the Greater Athens Area: effects of important parameters. Sci Total Environ 505:770–786. https://doi.org/10.1016/j.scitotenv.2014.10.015

    Article  CAS  Google Scholar 

  8. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

    Article  Google Scholar 

  9. Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4):367–378. https://doi.org/10.1016/S0167-9473(01)00065-2

    Article  Google Scholar 

  10. GoogleMaps (2023) Google Maps. https://maps.app.goo.gl/3FFqCird7CmnyF3X7

  11. Hirasen D, Pillay V, Viriri S, Gwetu M Skeletal Age Estimation from Hand Radiographs Using Ensemble Deep Learning. In: Roman-Rangel E, Kuri-Morales ÁF, Martínez-Trinidad JF, Carrasco-Ochoa JA, Olvera-López JA (eds) Pattern recognition, Cham, 2021// 2021. Springer International Publishing, pp 173–183

    Google Scholar 

  12. Hu H, Lee G, Kim JH, Shin H (2020) Estimating micro-level on-road vehicle emissions using the k-means clustering method with GPS big data. Electronics 9(12). https://doi.org/10.3390/electronics9122151

  13. Kutsev Bengisu Altug˘ SEK (2019) Predicting Tailpipe NOx Emission using Supervised Learning Algorithms. IEEE Xplore

    Google Scholar 

  14. Lasocki J (2021) The WLTC vs NEDC: A case study on the impacts of driving cycle on engine performance and fuel consumption. Int J Automot Mech Eng 18 (3):9071–9081. https://doi.org/10.15282/ijame.18.3.2021.19.0696

  15. Li Z, Yim SH-L, Ho K-F (2020) High temporal resolution prediction of street-level PM2.5 and NOx concentrations using machine learning approach. J Clean Prod 268. https://doi.org/10.1016/j.jclepro.2020.121975

  16. Lv Z, Wu L, Ma C, Sun L, Peng J, Yang L, Wei N, Zhang Q, Mao H (2023) Comparison of CO2, NOx, and VOCs emissions between CNG and E10 fueled light-duty vehicles. Sci Total Environ 858:159966

    Article  CAS  Google Scholar 

  17. Ma J, Yu Z, Qu Y, Xu J, Cao Y (2020) Application of the XGBoost machine learning method in PM2.5 Prediction: A case study of Shanghai. Aerosol Air Qual Res 20 (1):128–138. https://doi.org/10.4209/aaqr.2019.08.0408

  18. Moazami S, Noori R, Amiri BJ, Yeganeh B, Partani S, Safavi S (2016) Reliable prediction of carbon monoxide using developed support vector machine. Atmos Pollut Res 7(3):412–418. https://doi.org/10.1016/j.apr.2015.10.022

    Article  Google Scholar 

  19. Nie P, Roccotelli M, Fanti MP, Ming Z, Li Z (2021) Prediction of home energy consumption based on gradient boosting regression tree. Energy Rep 7:1246–1255. https://doi.org/10.1016/j.egyr.2021.02.006

    Article  Google Scholar 

  20. OpenStreetMap (2023) OpenStreetMap. https://www.openstreetmap.org/#map=15/3.0248/101.4318

  21. Ramos A, Muñoz J, Andrés F, Armas O (2018) NOx emissions from diesel light duty vehicle tested under NEDC and real-word driving conditions. Transp Res Part D: Transp Environ 63:37–48. https://doi.org/10.1016/j.trd.2018.04.018

    Article  Google Scholar 

  22. Sofwan NM, Latif MT (2021) Characteristics of the real-driving emissions from gasoline passenger vehicles in the Kuala Lumpur urban environment. Atmos Pollut Res 12(1):306–315. https://doi.org/10.1016/j.apr.2020.09.004

    Article  CAS  Google Scholar 

  23. Suleiman A, Tight MR, Quinn AD (2016) Assessment and prediction of the impact of road transport on ambient concentrations of particulate matter PM 10. Transp Res Part D: Transp Environ 49:301–312. https://doi.org/10.1016/j.trd.2016.10.010

    Article  Google Scholar 

  24. Talib AM, Jasim DMN (2021) GIS-GPS based national air pollution monitoring system. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.05.445

  25. Wang J, Wang R, Yin H, Wang Y, Wang H, He C, Liang J, He D, Yin H, He K (2022) Assessing heavy-duty vehicles (HDVs) on-road NO(x) emission in China from on-board diagnostics (OBD) remote report data. Sci Total Environ 846:157209. https://doi.org/10.1016/j.scitotenv.2022.157209

    Article  CAS  Google Scholar 

  26. Wang S, Gao S, Li S, Feng K (2020) Strategizing the relation between urbanization and air pollution: Empirical evidence from global countries. J Cleaner Prod 243. https://doi.org/10.1016/j.jclepro.2019.118615

  27. Wang S, Li Z, Tan J, Guo W, Li L A method for estimating carbon dioxide emissions based on low frequency GPS trajectories. In: 2017 Chinese Automation Congress (CAC), 2017. IEEE, pp 1960–1964

    Google Scholar 

  28. Wu Y, Yang Z, Lin B, Liu H, Wang R, Zhou B, Hao J (2012) Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China. Energy Policy 48:537–550

    Article  CAS  Google Scholar 

  29. Yousefi-Sahzabi A, Sasaki K, Djamaluddin I, Yousefi H, Sugai Y (2011) GIS modeling of CO2 emission sources and storage possibilities. Energy Procedia 4:2831–2838. https://doi.org/10.1016/j.egypro.2011.02.188

    Article  Google Scholar 

  30. Zhao J, Zhang D, Gao D, Bao J, Jing X, Li M Investigation of methods for measuring fuel economy and emissions of heavy-duty hybrid-electric vehicles (HEVs). In: E3S Web of Conferences, 2022. EDP Sciences, p 01002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norhakim Yusof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subramaniam, N., Yusof, N. (2024). Prediction of On-Road CO2 Emission in Urban Area Using State-of-The-Art Ensemble Machine Learning Model. In: Yadava, R.N., Ujang, M.U. (eds) Advances in Geoinformatics Technologies . Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-50848-6_7

Download citation

Publish with us

Policies and ethics