Skip to main content

Microplastic Pollution: Harmful Effects and Possible Bioremediation Strategies

  • Chapter
  • First Online:
Impact of COVID-19 Waste on Environmental Pollution and Its Sustainable Management

Part of the book series: Environmental Science and Engineering ((ESE))

  • 40 Accesses

Abstract

Ecosystems on land and in the sea are now being threatened by Microplastic (MP) pollution. It is numerous, persistent in the environment, and intricate. Concerns about the impact of MP pollution on ecosystems on the environment, economy, and society have drawn a lot of attention to studies on potential alternatives and corrective measures. Recent technological developments in the clean-up of MP pollution, as well as their implications for the economy and society, have not been studied. A possible remediation pathway has also been described, along with perspectives on future activities. MPs are pervasive in all spheres of human interaction (soil, water, and atmosphere) and dangerous to ecosystem biota, eventually contaminating food systems and harming human health. As it degrades more quickly than conventional plastic and is more susceptible to microorganisms, biodegradable plastic is recognized as an effective substitute for conventional plastic. A combination of biodegradable plastics and bioremediation, which involves removing MPs from the environment by using microorganisms, suggests a potential solution to the issue of MPs polluting ecosystems. As a result, biodegradable plastics made from biomass that isn't edible, like algae, may offer a way to eliminate MP pollution and promote the sustainability of ecosystems. Determining the environmental, economic, and social effects of biodegradable plastics and the bioremediation of MPs in ecosystems is therefore crucial in order to identify any potential threats to ecosystems and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aragaw TA (2020) Surgical face masks as a potential source for microplastic pollution in the Covid-19 scenario. Mar Pollut Bull 159:111517. https://doi.org/10.1016/j.marpolbul.2020.111517

    Article  CAS  Google Scholar 

  • Bläsing M, Amelung W (2018) Plastics in soil: analytical methods and possible sources. Sci Total Environ 612:422–435

    Article  Google Scholar 

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179.https://doi.org/10.1021/es201811s

  • Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF (2020) A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health 17(4):1212. https://doi.org/10.3390/ijerph17041212

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62(12):2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

    Article  CAS  Google Scholar 

  • Chalmers JM (2006) Infrared spectroscopy in analysis of polymers and rubbers. In: Meyers RA (ed) Encyclopaedia of analytical chemistry. Wiley. https://doi.org/10.1002/9780470027318.a2015

  • Da Costa Filho PA, Andrey D, Eriksen B et al (2021) Detection and characterization of small-sized microplastics (≥ 5 µm) in milk products. Sci Rep 11:24046. https://doi.org/10.1038/s41598-021-03458-7

    Article  CAS  Google Scholar 

  • Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Ubeda B, Hernández-León S et al (2014) Plastic debris in the open ocean. Proc Natl Acad Sci USA 111:10239–10244

    Article  Google Scholar 

  • Das AP, Mishra S (2008) Hexavalent chromium (VI): environment pollutant and health hazard. J Environ Res Dev 2(3):386–392

    CAS  Google Scholar 

  • Das AP, Mishra S (2010) Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain. J Carcinog 9:6

    Article  Google Scholar 

  • Das AP, Singh S (2011) Occupational health assessment of chromite toxicity among Indian miners. Indian J Occup Environ Med 15(1):6–13

    Article  Google Scholar 

  • Das AP, Ghosh S (2018) Bioleaching of manganese from mining waste materials. Mater Today Proc 5(1):2381–2390

    Article  CAS  Google Scholar 

  • Das AP, Kumar PS, Swain S (2014) Recent advances in biosensor based endotoxin detection. Biosense Bioelectron 51:62–75

    Google Scholar 

  • Das AP, Sukla LB, Pradhan N, Nayak S (2011) Manganese biomining: a review. Bioresour Technol 102(16):7381–7387

    Google Scholar 

  • Das A, Swain S, Panda S, Pradhan N, Sukla L (2012) Reductive acid leaching of low grade manganese ores. GM 02(04):70–72

    Google Scholar 

  • Das AP, Ghosh S, Mohanty S, Sukla LB (2015a) Consequences of manganese compounds: a review. Toxicol Environ Chem 96(7):981–997

    Google Scholar 

  • Das A, Bal B, Mahapatra P (2015b) Chromogenic biosensors for pathogen detection. In: Biological and pharmaceutical applications of nanomaterials, pp 273–288. https://doi.org/10.1201/b18654-15

  • Das AP, Ghosh S, Mohanty S, Sukla LB (2015c) Advances in manganese pollution and its bioremediation. In: Environmental microbial biotechnology. Soil biology. Springer, Singapore

    Google Scholar 

  • Deng H, Wei R, Luo W, Hu L, Li B, Di Y, Shi H (2019) Microplastic pollution in water and sediment in a textile industrial area. Environ Pollut: 113658.https://doi.org/10.1016/j.envpol.2019.113658

  • Derraik JG (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44(9):842–852. https://doi.org/10.1016/s0025-326x(02)00220-5

    Article  CAS  Google Scholar 

  • Dey A, Dhumal CV, Sengupta P et al (2021) Challenges and possible solutions to mitigate the problems of single-use plastics used for packaging food items: a review. J Food Sci Technol 58:3251–3269. https://doi.org/10.1007/s13197-020-04885-6

    Article  CAS  Google Scholar 

  • Franz R, Welle F (2022) Recycling of post-consumer packaging materials into new food packaging applications—critical review of the European approach and future perspectives. Sustainability 14(2):824. https://doi.org/10.3390/su14020824

    Article  Google Scholar 

  • Galloway TS, Cole M, Lewis C (2017) Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol 1(5):1–8

    Article  Google Scholar 

  • Ghosh S, Das AP (2015) Modified titanium oxide (TiO2) nanocomposites and its array of applications: a review. Toxicol Environ Chem 97(5):491–514

    Article  CAS  Google Scholar 

  • Ghosh S, Das AP (2017) Bioleaching of manganese from mining waste residues using Acinetobacter sp. Geol Ecol Landsc 1(2):77–83

    Google Scholar 

  • Ghosh S, Das AP (2018) Metagenomic insights into the microbial diversity in manganese-contaminated mine tailings and their role in biogeochemical cycling of manganese. Sci Rep 8(1):8257

    Article  Google Scholar 

  • Ghosh S, Das AP (2020) Microbial metagenomics: current advances in investigating microbial ecology and population dynamics. In: Frontiers in soil and environmental microbiology. CRC Press, Taylor & Francis, Boca Raton. eBook ISBN9780429485794

    Google Scholar 

  • Ghosh S, Mohanty S, Nayak S, Sukla LB, Das AP (2015) Molecular identification of indigenous manganese solubilizing bacterial biodiversity from manganese mining deposits. J Basic Microbiol 55:1–9

    Google Scholar 

  • Ghosh S, Mohanty S, Akcil A, Sukla LB, Das AP (2016) A greener approach for resource recycling: manganese bioleaching. Chemosphere 154:628–639

    Article  CAS  Google Scholar 

  • Ghosh S, Bal B, Das AP (2018) Enhancing manganese recovery from low grade ores by using mixed culture of indigenously isolated bacterial strains. Geomicrobiol J 35(3):242–246

    Article  CAS  Google Scholar 

  • Ghosh S, Gandhi M, Van Hullebusch ED, Das AP (2020) Proteomic insights into Lysinibacillus sp.-mediated biosolubilization of manganese. Environ Sci Pollut Res 28(30):40249–40215

    Google Scholar 

  • Issac MN, Kandasubramanian B (2021) Effect of microplastics in water and aquatic systems. Environ Sci Pollut Res Int 28(16):19544–19562. https://doi.org/10.1007/s11356-021-13184-2

    Article  CAS  Google Scholar 

  • Kirstein IV, Kirmizi S, Wichels A, Garin-Fernandez A, Erler R, Löder M, Gerdts G (2016) Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 120:1–8

    Article  CAS  Google Scholar 

  • Klein M, Fischer EK (2019) Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg. Science of The Total Environment, Germany. https://doi.org/10.1016/j.scitotenv.2019.05.405

    Book  Google Scholar 

  • Luo W, Su L, Craig NJ et al (2019) Comparison of microplastic pollution in different water bodies from urban creeks to coastal waters. Environ Pollut 246:174–182. https://doi.org/10.1016/j.envpol.2018.11.081

    Article  CAS  Google Scholar 

  • Mishra S, Dash D, Subhadarsini S (2018) Antibacterial activity assessment of native fungus isolated from chromite mines of Sukinda, Odisha. Int J Sci Res 8:1628–1631

    Google Scholar 

  • Mishra S, Rath CC, Das AP (2019a) Marine microfiber pollution: a review on present status and future challenges. Mar Pollut Bull 140:188–197

    Article  CAS  Google Scholar 

  • Mishra S, Rout PK, Das AP (2019b) Solar photovoltaic panels as next generation waste: a review. Biointerface Res Appl Chem 9(6):4539–4546

    Article  CAS  Google Scholar 

  • Mishra S, Dash D, Subhadarsini S (2019c) Antibacterial activity assessment of native fungus isolated from chromite mines of Sukinda, Odisha. Int J Sci Res (IJSR) 8(11):1628–1631

    Google Scholar 

  • Mishra S, Singh RP, Rath CC, Das AP (2020) Synthetic microfibers: source, transport and their remediation. J Water Process Eng 38:101612

    Article  Google Scholar 

  • Mishra S, Swain S, Sahoo M, Mishra S, Das AP (2021a) Microbial colonization and degradation of microplastics in aquatic ecosystem: a review. Geomicrobiol J: 1–11.https://doi.org/10.1080/01490451.2021.1983670

  • Mishra S ,Rout M, Das AP (2021b) Emerging microfiber pollution and its remediation. In: Microbial biotechnology and environmental issues/remediation. Springer, Singapore

    Google Scholar 

  • Mishra S, Swain S, Sahoo M, Mishra S, Das AP (2021c) Microbial colonization and degradation of microplastics in aquatic ecosystem: a review. Geomicrobiol J. https://doi.org/10.1080/01490451.2021.1983670

    Article  Google Scholar 

  • Mishra S, Das AP (2022a) Treatment of the Wastewater Polluted with Synthetic Microfiber Released from Washing Machine. In: Das BB, Hettiarachchi H, Sahu PK, Nanda S (eds) Recent developments in sustainable infrastructure (ICRDSI-2020)—GEO-TRA-ENV-WRM. Lecture notes in civil engineering, vol 207. Springer, Singapore. https://doi.org/10.1007/978-981-16-7509-6_9

  • Mishra S, Singh RP, Rout PK, Das AP (2022b) Membrane bioreactor (MBR) as an advanced wastewater treatment technology for removal of synthetic microplastics. In: development in wastewater treatment research and processes: removal of emerging contaminants from wastewater through bio-nanotechnology. Elsevier. 45–60. https://doi.org/10.1016/C2020-0-02350-9

  • Mishra S, Dash D, Das AP (2022c) Detection, characterization and possible biofragmentation of synthetic microfibers released from domestic laundering wastewater as an emerging source of marine pollution. Marine pollution bulletin 185:114254

    Google Scholar 

  • Mohanty S, Ghosh S, Nayak S, Das AP (2016) Bioleaching of manganese by Aspergillus oryzae isolated from mining deposits. Chemosphere 172:302–309

    Article  Google Scholar 

  • Mohanty S, Ghosh S, Nayak S, Das AP (2017a) Isolation, identification and screening of manganese solubilizing fungi from low grade manganese ore deposits. Geomicrobiol J 34(4):309–316

    Article  CAS  Google Scholar 

  • Mohanty S, Ghosh S, Nayak S, Das AP (2017b) Isolation, identification and screening of manganese solubilizing fungi from low-grade manganese ore deposits. Geomicrobiol J 34(4):309–316

    Article  CAS  Google Scholar 

  • Mohanty S, Ghosh S, Bal B, Das AP (2018) A review of biotechnology processes applied for manganese recovery from wastes. Rev Environ Sci Biotechnol 17(4):791–811

    Article  CAS  Google Scholar 

  • Nizzetto L, Bussi G, Futter MN et al (2016) A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environ Sci Process Impacts 18:1050–1059. https://doi.org/10.1039/C6EM00206D

    Article  CAS  Google Scholar 

  • Odusanya SA, Nkwogu JV, Alu N, Udo E, Ajao JA, Osinkolu GA, Uzomah AC (2013) Preliminary studies on microbial degradation of plastics used in packaging potable water in Nigeria. Niger Food J 31920:63–72

    Article  Google Scholar 

  • Rastogi RP, Madamwar D, Nakamoto H, Incharoensakdi A (2020) Resilience and self-regulation processes of microalgae under UV radiation stress. J Photochem Photobiol C 43:100322. https://doi.org/10.1016/j.jphotochemrev.2019.100322

    Article  CAS  Google Scholar 

  • Rillig MC (2012) Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol 46:6453–6454

    Article  CAS  Google Scholar 

  • Rillig MC (2018) Microplastic disguising as soil carbon storage. Environ Sci Technol 52:6079–6080

    Article  CAS  Google Scholar 

  • Rillig MC, Ingraffia R, Machado AAS (2017a) Microplastic incorporation into soil in agroecosystems. Front Plant Sci 8:1805

    Article  Google Scholar 

  • Rillig MC, Ziersch L, Hempel S (2017b) Microplastic transport in soil by earthworms. Sci Rep 7:1362

    Article  Google Scholar 

  • Rezania S, Park J, Md Din MF, Mat Taib S, Talaiekhozani A, Kumar Yadav K, Kamyab H (2018) Microplastics pollution in different aquatic environments and biota: a review of recent studies. Mar Pollut Bull 133:191–208

    Article  CAS  Google Scholar 

  • Setälä O, Fleming-Lehtinen V, Lehtiniemi M (2014) Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut 185:77–83

    Article  Google Scholar 

  • Sriyapai P, Chansiri K, Sriyapai T (2018) Isolation and characterization of polyester-based plastics-degrading bacteria from compost soils. Microbiology 87:290–300. https://doi.org/10.1134/S0026261718020157

    Article  CAS  Google Scholar 

  • Shim WJ, Hong SH, Eo SE (2017) Identification methods in microplastic analysis: a review. Anal Methods 9(9):1384–1391. https://doi.org/10.1039/c6ay02558g

    Article  CAS  Google Scholar 

  • Singh RP, Mishra S, Das AP (2020) Synthetic microfibers: Pollution toxicity and remediation, Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127199

  • Tiwari M, Rathod TD, Ajmal PY, Bhangare RC, Sahu SK (2019) Distribution and characterization of microplastics in beach sand from three different Indian coastal environments. Mar Pollut Bull 140:262–273. https://doi.org/10.1016/j.marpolbul.2019.01.055

    Article  CAS  Google Scholar 

  • Teuten EL, Jovita MS, Detlef RUK, Morton AB, Susanne J, Annika B, Steven JR, Richard CT, Tamara SG, Rei Y, Daisuke O, Yutaka W, Charles M, Pham HV, Touch ST, Maricar P, Ruchaya B, Mohamad PZ, Kongsap A, Yuko O, Hisashi H, Satoru I, Kaoruko M, Yuki H, Ayako I, Mahua S, Hideshige T (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc Lond B Biol Sci 364:2027–2045

    Article  CAS  Google Scholar 

  • Thomas M, Jon B, Craig S, Edward R, Ruth H, John B, Dick AV, Heather LA, Matthew S (2020) The world is your oyster: low-dose, long-term microplastic exposure of juvenile oysters. Heliyon 6(1):e03103. https://doi.org/10.1016/j.heliyon.2019.e03103

    Article  Google Scholar 

  • Vom Saal FS, Myers JP (2008) Bisphenol a and risk of metabolic disorders. J Am Med Assoc 300:1353–1355

    Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Nat Acad Sci USA 111:5266–5270

    Article  CAS  Google Scholar 

  • Wu X, Liu Y, Yin S, Xiao K, Xiong Q, Bian S, Liang S, Hou H, Hu J, Yang J (2020) Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. Environ Pollut 266(Pt 1):115159. https://doi.org/10.1016/j.envpol.2020.115159

  • Wright S, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647

    Google Scholar 

  • Wright SL, Kelly FJ (2017b) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647. https://doi.org/10.1021/acs.est.7b00423

    Article  CAS  Google Scholar 

  • Weber A, Scherer C, Brennholt N, Reifferscheid G, Wagner M (2018) PET microplastics do not negatively affect the survival, development, metabolism and feeding activity of the freshwater invertebrate Gammarus pulex. Environ Pollut 234:181–189. https://doi.org/10.1016/j.envpol.2017.11.014

  • Yang L, Qiao F, Lei K, Li H, Kang Y, Cui S, An L (2019) Microfiber release from different fabrics during washing. Environ Pollut 249:136–143. https://doi.org/10.1016/j.envpol.2019.03.011

  • Yin L, Jiang C, Wen X, Du C, Zhong W, Feng Z, Long L, Ma Y (2019) Microplastic pollution in surface water of urban lakes in Changsha, China. Int J Environ Res Publ Health 16:1650. https://doi.org/10.3390/ijerph16091650

  • Zhang D, Liu X, Huang W et al (2020) Microplastic pollution in deep-sea sediments and organisms of the Western Pacific ocean. Environ Pollut 259:113948. https://doi.org/10.1016/j.envpol.2020.113948

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, J.P., Sethi, S.C., Dash, D., Mishra, S. (2024). Microplastic Pollution: Harmful Effects and Possible Bioremediation Strategies. In: Das, A.P., Mishra, S. (eds) Impact of COVID-19 Waste on Environmental Pollution and Its Sustainable Management. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-50840-0_3

Download citation

Publish with us

Policies and ethics