Skip to main content

Improvement in Fruit Crop Plants Through Mutation Breeding for Sustainable Development

  • Chapter
  • First Online:
Plant Mutagenesis

Abstract

Fruit crops are an important entity of the agriculture sector that plays a significant role in global nutritional health and food security. It has been estimated that by 2050, there will be 70% more food demand to meet the requirements of the fast-growing world population. Therefore, there is a need to improve the existing fruit crop cultivars by enhancing their diversity, productivity, nutritional attributes, and adaptability within ever-climate-changing scenarios. Conventional breeding methods for fruit crop improvement have been in practice for a long time, however, these techniques are laborious as they have a long phase of juvenility, heterozygosity issues, and are time-consuming. Mutation breeding's role in fruit crop improvement has been documented because of its ability in creating variability and shortening the time for new cultivar development. The mutation breeding for crop improvement through physical and chemical mutagens has been successfully exploited in fruit crops like pear, peach, banana, papaya, grapes, almond, plum, sour and sweet cherry, apple, lemon, blueberry, and rough lemon. In fruit crops, mutagenesis has shown evidence in improving the fruit traits like color development, fruit size enhancement, taste, aroma, and has induced dwarfism and self-incompatibility. The artificial plant mutation techniques such as physical and chemical mutations are very fascinating and the application of these techniques in fruit crops is resulting in new sustainable commercial cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, Costa De Oliveira A, Cseke LJ, Dempewolf H, De Pace C, Edwards D (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J 14(4):1095–1098

    Article  Google Scholar 

  • Abou Elyazid DM, El-Shereif AR (2014) In vitro induction of polyploidy in Citrus reticulata Blanco. Am J Plant Sci 5(11):1679

    Google Scholar 

  • Afiya R, Kumar SS, Manivannan S (2021) Recent Trends with Mutation Breeding in Fruit Crop Improvement. Plant Cell Biotechnol Mol Biol 22:393–403

    Google Scholar 

  • Agisimanto D, Noor NM, Ibrahim R, Mohamad A (2016) Gamma irradiation effect on embryogenic callus growth of Citrus reticulata cv. Limau Madu Sains Malays 45(3):329–337

    CAS  Google Scholar 

  • Allario T, Brumos J, Colmenero-flores JM, Iglesias DJ, Pina JA, Navarro L, Talon M, Ollitrault P, Morillon R (2013) Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. Plant Cell Environ 36(4):856–868

    Article  CAS  Google Scholar 

  • Altaf S, Khan MM, Jaskani MJ, Khan IA, Usman M, Sadia B, Awan FS, Ali A, Khan AI (2014) Morphogenetic characterization of seeded and seedless varieties of Kinnow Mandarin (‘Citrus reticulata’ Blanco). Aust J Crop Sci 8(11):1542–1549

    Google Scholar 

  • Amin R, Laskar RA, Khan S (2015) Assessment of genetic response and character association for yield and yield components in Lentil (Lens culinaris L.) population developed through chemical mutagenesis. Cogent Food Agric 1(1):1000715

    Google Scholar 

  • Ania W, Mark W (2022) History of agricultural biotechnology: how crop development has evolved. https://www.nature.com/scitable/knowledge/library/history-of-agricultural-biotechnology-how-crop-development-25885295/. Accessed 5 Mar 2022

  • Bado S, Forster BP, Nielen S, Ali AM, Lagoda PJ, Till BJ, Laimer M (2015) Plant mutation breeding: current progress and future assessment. Plant Breed Rev 39:23–88

    Google Scholar 

  • Beyaz R, Yildiz M (2017) The use of gamma irradiation in plant mutation breeding. Plant Eng 33–46

    Google Scholar 

  • Bhoi A, Yadu B, Chandra J, Keshavkant S (2022) Mutagenesis: a coherent technique to develop biotic stress resistant plants. J Plant Stress Physiol 3:100053

    Article  CAS  Google Scholar 

  • Campeanu G, Neata G, Darjanschi G, Rodica S (2010) Tree and fruit characteristics of various apple genotypes obtained through mutagenesis. Not Bot Horti Agrobot 38(1):248–251

    Google Scholar 

  • Charles H, Godfray H, Garnett T (2014) Food security and sustainable intensification. Philos Trans R Soc Biol Sci

    Google Scholar 

  • Chen Y, Chen W, Huang X, Hu X, Zhao J, Gong Q, Li X, Huang X (2013) Fusarium wilt‐resistant lines of Brazil banana (Musa spp., AAA) obtained by EMS‐induced mutation in a micro‐cross‐section cultural system. Plant Pathol J 62(1):112–119

    Google Scholar 

  • Da Graça J, Louzada E, Sauls J (2004) The origins of red pigmented grapefruits and the development of new varieties. Proc Int Soc Citric 1(1):369–374

    Google Scholar 

  • Dunnen JTD, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12

    Article  Google Scholar 

  • Erpen-Dalla Corte L, Mahmoud ML, Moraes TS, Mou Z, Grosser JW, Dutt M (2019) Development of improved fruit, vegetable, and ornamental crops using the CRISPR/Cas9 genome editing technique. Plants 8(12):601

    Google Scholar 

  • FAO (2018) FAOSTAT Database. Food and Agriculture Organization of the United Nations, Rome, Italy. Retrieved from: https://www.fao.org/3/CA1796EN/ca1796en.pdf

  • FAO (2000) FAOSTAT Database. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • IAEA (2020) mutant variety database. https://mvd.iaea.org.

  • Forster BP, Thomas WT (2010) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88

    Google Scholar 

  • Furuta O, Imai T (1987) Pomological characters of a new, self-fertilizing Japanese pear cultivar “Osa-Nijisseiki” and the optimal fruit thinning method. Bulletin of the Tottori Fruit Tree Experiment Station (Japan).

    Google Scholar 

  • Gill K, Kumar P, Kumar A, Kapoor B, Sharma R, Joshi AK (2022) Comprehensive mechanistic insights into the citrus genetics, breeding challenges, biotechnological implications, and omics-based interventions. Tree Genet Genomes 18(2):9

    Article  Google Scholar 

  • Golein B, Bigonah M, Azadvar M, Golmohammadi M (2012) Analysis of genetic relationship between ‘Bakraee’ (Citrus sp.) and some known Citrus genotypes through SSR and PCR-RFLP markers. Sci Hortic 148:147–153

    Article  CAS  Google Scholar 

  • Gulsen O, Uzun A, Pala H, Canihos E, Kafa G (2007) Development of seedless and Mal Secco tolerant mutant lemons through budwood irradiation. Sci Hortic 112(2):184–190

    Article  Google Scholar 

  • Helaly M, El-Hosieny AH (2011) Effectiveness of gamma irradiated protoplasts on improving salt tolerance of lemon (Citrus limon L. Burm. f.). Am J Plant Physiol 6(4):190–208

    Google Scholar 

  • Jankowicz-Cieslak J, Mba C, Till BJ (2017) Mutagenesis for crop breeding and functional genomics. Biotechnol Plant Mutat Breed: Protoc 3–18

    Google Scholar 

  • Karanjalker G, Begane N (2016) Breeding perennial fruit crops for quality improvement. Erwerbs-Obstbau 58(2)

    Google Scholar 

  • Khan IA, Kender WJ (2007) Citrus breeding: introduction and objectives. In: Citrus genetics, breeding and biotechnology. CAB International Wallingford UK, pp 1–8

    Google Scholar 

  • Khan S, Al-Qurainy F, Anwar F (2009) Sodium azide: a chemical mutagen for enhancement of agronomic traits of crop plants. Environ We Int J Sci Tech 4:1–21

    CAS  Google Scholar 

  • Khursheed S, Raina A, Parveen K, Khan S (2019) Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis. J Saudi Soc Agric Sci 18(2):113–119

    Google Scholar 

  • King J (2017) Using economic methods evaluatively. Am J Eval 38(1):101–113

    Article  Google Scholar 

  • Kitagawa K, Nagara M, Uchida M, Inoue K, Murata K, Masuda T, Yoshioka T, Kotobuki K (1999) A new Japanese pear [Pyrus pyrifolia] cultivar ‘Kotobuki Shinsui’. Special Bulletin of the Tottori Horticultural Experiment Station (Japan)

    Google Scholar 

  • Koltunow AM, Hidaka T, Robinson SP (1996) Polyembryony in Citrus (accumulation of seed storage proteins in seeds and in embryos cultured in vitro). Plant Physiol 110(2):599–609

    Article  CAS  Google Scholar 

  • Lapins K (1983) Mutation breeding. Methods in fruit breeding. Purdue Univ. Press, West Lafayette, IN, pp 74–99

    Google Scholar 

  • Lee S, Costanzo S, Jia Y (2012) The structure and regulation of genes and consequences of genetic mutations. In: Plant mutation breeding and biotechnology. CABI Wallingford UK, pp 31–45

    Google Scholar 

  • López J, Montano N, Reinaldo D (2008) Development of a methodology for the propagation of'Calcutta 4′(AA) and plantain genotypes from embryogenic cell suspensions and its interface with mutation breeding

    Google Scholar 

  • Maluszynski M, Nichterlein K, Van Zanten L, Ahloowalia B (2000) Officially released mutant varieties-the FAO/IAEA Database

    Google Scholar 

  • Masuda T, Yoshioka T, Sanada T, Kotobuki K, Nagara M, Uchida M, Inoue K, Murata K, Kitagawa K, Yoshida A (1998) A new Japanese pear cultivar” Osa Gold”, resistant mutant to the black spot disease of japanese pear (Pyrus pyrifolia Nakai) induced by chronic irradiation of gamma-rays. Bulletin of the National Institute of Agrobiological Resources (Japan).

    Google Scholar 

  • Maurya P, Sagore B, Jain S, Saini S, Ingole A, Meena R, Kumar V (2022) Mutational breeding in fruit crops: a review

    Google Scholar 

  • Mba C, Afza R, Shu Q (2012) Mutagenic radiations: X-rays, ionizing particles and ultraviolet. In: Plant mutation breeding and biotechnology. CABI Wallingford UK, pp 83–90

    Google Scholar 

  • Murovec J, Bohanec B (2011) Haploids and doubled haploids in plant breeding. Plant Breed. Dr. Ibrokhim Abdurakhmonov (ed).–2012, pp 87–106

    Google Scholar 

  • MVD (2020) Mutant variety database. Joint FAO/IAEA programme: nuclear techniques in food and agriculture. International Atomic Energy Agency (IAEA). http://mvd.iaea.org/

  • Mwangi M, Waudo S, Kahangi E (2009) In vitro mutation induction for the improvement of Mycosphaerella fijiensis resistance in two banana cultivars grown in Kenya. In: V international symposium on banana: ISHS-ProMusa symposium on global perspectives on asian challenges, p 897

    Google Scholar 

  • Nakagawa H (2021) History of mutation breeding and molecular research using induced mutations in Japan. In: Mutation breeding, genetic diversity and crop adaptation to climate change. CABI Wallingford UK, pp 24–39

    Google Scholar 

  • Nerkar G, Devarumath S, Purankar M, Kumar A, Valarmathi R, Devarumath R, Appunu C (2022) Advances in crop breeding through precision genome editing. Front Genet 13:880195

    Article  CAS  Google Scholar 

  • Notsuka K, Tsuru T, Shiraishi M (2000) Induced polyploid grapes via in vitro chromosome doubling. J Jpn Soc Hortic 69(5):543–551

    Article  CAS  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16

    Article  CAS  Google Scholar 

  • Pandit R, Bhusal B, Regmi R, Neupane P, Bhattarai K, Maharjan B, Acharya S, Bigyan K, Poudel MR (2021) Mutation breeding for crop improvement: a review. Rev Food Agr 2(1):31–35

    Article  Google Scholar 

  • Pathirana R (2011) Plant mutation breeding in agriculture. CABI Rev 2011:1–20

    Google Scholar 

  • Pérez-Jiménez M, Pérez-Tornero O (2020) Mutants of Citrus macrophylla rootstock obtained by gamma radiation improve salt resistance through toxic ion exclusion. Plant Physiol Biochem 155:494–501

    Google Scholar 

  • Raina A, Laskar RA, Jahan R, Khursheed S, Amin R, Wani MR, Nisa T, Khan S (2018) Mutation breeding for crop improvement. Introduction to Challenges and Strategies to Improve Crop Productivity in Changing Environment 2018a:303–317

    Google Scholar 

  • Rana MA, Usman M, Fatima B, Fatima A, Rana I, Rehman W, Shoukat D (2020) Prospects of mutation breeding in grapefruit (Citrus paradisi Macf.). J Hort Sci Tech 3(2):31–35

    Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8(6):e66428

    Article  CAS  Google Scholar 

  • Roux N (2004) Mutation induction in Musa review. Banana improvement: Mol. Cell. Biol. and induced mutations. In: Proceedings of a meeting held in Leuven, Belgium, 24–28 September 2001

    Google Scholar 

  • Saini H, Gill M (2009) Induction of mutation in Rough lemon (Citrus jambhiri Lush.) using gamma rays. J Hortic Sci 4(1):41–44

    Google Scholar 

  • Saito T (2016) Advances in Japanese pear breeding in Japan. Breed Sci 66(1):46–59

    Article  Google Scholar 

  • Sales EK, Lopez J, Espino R, Butardo N, González L (2013) Improvement of bananas through gamma ray irradiation. Philipp J Crop Sci 38(2):47–53

    Google Scholar 

  • Saraswathi MS, Kannan G, Uma S, Kalaiponman K (2020) Improvement in banana through mutation breeding: status and prospect. Banan Plantains: Lead-Edge Res Dev 1:288–308

    Google Scholar 

  • Sarsu F (2020) Contribution of induced mutation. ACI Avances en Ciencias e Ingenierías 12(3):10–10

    Google Scholar 

  • Sattar MN, Iqbal Z, Al-Khayri JM, Jain SM (2021) Induced genetic variations in fruit trees using new breeding tools: food security and climate resilience. Plants 10(7):1347

    Article  CAS  Google Scholar 

  • Shafieizargar A, Awang Y, Juraimi AS, Othman R (2013) Comparative studies between diploid and tetraploid Dez Orange [‘Citrus sinensis'(L.) Osb.] under salinity stress. Aust J Crop Sci 7(10):1436–1441

    Google Scholar 

  • Sharma A, Singh S (2013) Induced mutation-a tool for creation of genetic variability in rice (Oryza sativa L.). J Crop Weed 9:132–138

    Google Scholar 

  • Shimelis H, Spies J (2011) Aneuploids of wheat and chromosomal localization of genes. Afr J Biotechnol 10(29):5545–5551

    Google Scholar 

  • Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genomics 2011

    Google Scholar 

  • Smith M, Hamill S, Langdon P, Giles J, Doogan V, Pegg K (2006) Towards the development of a Cavendish banana resistant to race 4 of fusarium wilt: gamma irradiation of micropropagated Dwarf Parfitt (Musa spp., AAA group, Cavendish subgroup). Aust J Exp Agric 46(1):107–113

    Google Scholar 

  • Tang J, Qiu J, Huang X (2020) The development of genomics technologies drives new progress in horticultural plant research. Chin J Bot 55(1):1

    Google Scholar 

  • Tantray AY, Raina A, Khursheed S, Amin R, Khan S (2017) Chemical mutagen affects pollination and locule formation in capsules of black cumin (Nigella sativa L.). Intl J Agric Sci 8(1):108–117

    Google Scholar 

  • Tao R, Wang C, Fang J, Shangguan L, Leng X, Zhang Y (2012) General situation of grape breeding research in China. Acta Agric Jiangxi 24(6):24–34

    CAS  Google Scholar 

  • Tetali S, Karkamkar S, Phalake S (2020) Mutation breeding for inducing seedlessness in grape variety ARI 516. Int J Minor Fruits Med Aromat Plants 6(2):67–71

    Google Scholar 

  • Toker C, Yadav SS, Solanki I (2007) Mutation breeding. Lentil: an ancient crop for modern times, 209–224

    Google Scholar 

  • Udage AC (2021) Introduction to plant mutation breeding: different approaches and mutagenic agents. J Agric Sci Sri Lanka 16:466–483

    Google Scholar 

  • Ulukapi K, Nasircilar AG (2015) Developments of gamma ray application on mutation breeding studies in recent years. In: International conference on advances in agricultural, biological & environmental sciences

    Google Scholar 

  • Uzun A, Gulsen O, Kafa G, Seday U (2008) ‘Alata’, ‘Gulsen’, and ‘Uzun’seedless lemons and ‘Eylul’early-maturing lemon. HortScience 43(6):1920–1921

    Article  Google Scholar 

  • Van Harten AM (1998) Mutation breeding: theory and practical applications, vol 1. Cambridge University Press

    Google Scholar 

  • Wolter F, Schindele P, Puchta H (2019) Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biol 19(1):1–8

    Article  Google Scholar 

  • Xing Y, Tai ZE, Jian-kai X, Zhi-da L, Gui-bing H, Zhao-qi ZH, Zuoliang J, Yu-cheng CH, Guo-liang CH, Li-xiong CH, Shun-quan LI (2006) Wuzishatangju, a new mandarinn cultivar. J Fruit Sci 23:149–150

    Google Scholar 

  • Yali W, Mitiku T (2022) Mutation breeding and its importance in modern plant breeding. J Plant Sci 10(2):64–70

    Google Scholar 

  • Yasuda K, Kunitake H, Nakagawa S, Kurogi H, Yahata M, Hirata R, Yoshikura Y, Kawakami I, Sugimoto Y (2008) The confirmation of ploidy periclinal chimera and its morphological characteristics in meiwa kumquat [Fortunella crassifolia]'Yubeni’. Horticultural Research (Japan)

    Google Scholar 

  • Zakir M (2018) Mutation breeding and its application in crop improvement under current environmental situations for biotic and abiotic stresses. Int J Res Stud Agric Sci 4:1–10

    Google Scholar 

  • Zhang Y-J, Wang X-J, Wu J-X, Chen S-Y, Chen H, Chai L-J, Yi H-L (2014) Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening. PLoS ONE 9(12):e116056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mumtaz Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mumtaz Khan, M., Akram, M.T., Nabi, T., Qadri, R., A-Yahyai, R. (2024). Improvement in Fruit Crop Plants Through Mutation Breeding for Sustainable Development. In: Kumar, N. (eds) Plant Mutagenesis. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-031-50729-8_9

Download citation

Publish with us

Policies and ethics