Skip to main content

Use of Chemical Mutagens in Field Crop Breeding

  • Chapter
  • First Online:
Plant Mutagenesis

Abstract

Factors such as abiotic and biotic stress, pests, diseases, and climate change can affect the morpho-physiological and biochemical status of the plant and alter its growth and development. Therefore, there is a need for mutation breeding studies using chemical mutagens to increase genetic variation and to obtain new varieties with improved existing characteristics (high yield, resistance to diseases and pests, etc.) that can adapt to adverse conditions. For this reason, studies to determine the mutagen dose and application duration that will be exerted on plant species and varieties should be increased. In addition to in vivo mutation breeding, mutagen can be applied to plant parts (somatic parts such as leaves, shoots, and flowers) incubated in vitro, and by using the tissue culture technique, it is possible to be successful in developing varieties in a short time. In addition, molecular studies on the extent and, type and level of genetic variation in mutants obtained by mutation, and the identification and detection of mutant genes should be emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam Q, Khah MA, Azad ZRAA (2022) Comparative analysis of different chemical mutagens in inducing chromosomal aberrations in meiotic cells of Triticum aestivum L. Cytologia 87(2):99–105. https://doi.org/10.1508/cytologia.87.99

    Article  CAS  Google Scholar 

  • Altındal N (2014) Induction of variation using chemical mutagene (ethyl methanesulfonate) treatment and characterzation by molecular markers in potato (Solanum tuberosum L.). Süleyman Demirel University Graduate School of Applied and Natural Sciences Department of Field Crops, PhD Thesis, 159 pp

    Google Scholar 

  • Altındal N (2019) Molecular characterization of Helianthus tuberosus L. treated with ethyl methanesulfonate based on inter-simple sequence repeat markers. Int J Environ Sci Technol 16:5311–5318

    Article  Google Scholar 

  • Altındal D, Altındal N (2018) Effect of ethyl methanesulphonate (EMS) applications on in vitro growth of sunfower (Helianthus annuus L. cv. Palancı-I) under salinity conditions. J Inst Sci Technol 8(4):351–359

    Google Scholar 

  • Ariharasutharsan G, Parameswari C, Sandhiya V, Murugan E, Vanniarajan C (2022) Effect of gamma ray and gamma ray + EMS combination treatment on M1 and M2 generations of white seeded sesame (Sesamum indicum). Research on Crops. 23(1):92–99. https://doi.org/10.31830/2348-7542.2022.014

    Article  Google Scholar 

  • Bukowska B, Duchnowicz P (2022) Molecular mechanisms of action of selected substances ınvolved in the reduction of benzo[a]pyrene-ınduced oxidative stress. Molecules 27:1379. https://doi.org/10.3390/molecules27041379

    Article  CAS  Google Scholar 

  • Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58:235–263

    Article  CAS  Google Scholar 

  • Devi MS, D Mohan Reddy DM, Reddy VLN, Reddy DL, Sudhakar P, Sofia S (2021) Effect of mutagenesıis on growth and yield related traits in blackgram (Vigna mungo (L.) Hepper). Part I: plant sciences. J Res ANGRAU 49(4):14–29

    Google Scholar 

  • Dyulgerova B, Dyulgerov N (2022) Mutagenic effect of sodium azide on winter barley cultivars. Agric Sci Technol 14(2):27–33

    Google Scholar 

  • Eswaramoorthy V, Kandasamy T, Thiyagarajan K, Vanniarajan C, Jegadeesan S (2021) Effectiveness and efficiency of electron beam in comparison with gamma rays and ethyl methane sulfonate mutagens in cowpea. Appl Radiat Isot 171:109640. https://doi.org/10.1016/j.apradiso.2021.109640

    Article  CAS  Google Scholar 

  • Forner J, Kleinschmidt D, Meyer EH, Axel Fischer A, Morbitzer R, Lahaye T, Schöttler MA, Ralph Bock R (2022) Targeted introduction of heritable point mutations into the plant mitochondrial genome. Nat Plants 8:245–256. https://doi.org/10.1038/s41477-022-01108-y

    Article  CAS  Google Scholar 

  • Francis N, Ravikesavan R, Iyanar K, Raveendran M, Chitdeshwari T, Senthil A (2022) Dose optimization, mutagenic effectiveness and efficiency of EMS in proso millet (Panicum miliaceum L.). J Curr Crop Sci Technol, 47–51. https://doi.org/10.29321/MAJ.10.000575

  • Goyal S, Wani MR, Raina A, Laskar RA, Khan S (2021) Quantitative assessments on induced high yielding mutant lines in urdbean [Vigna mungo (L.) hepper]. Legume Sci 4(2):e125. https://doi.org/10.1002/leg3.125

  • Habib SH, Akanda MAL, Roy P, Kausar H (2021) Effect of different dosage of EMS on germination, survivability and morpho-physiological characteristics of sunflower seedling. Helia 44(75):167–180. https://doi.org/10.1515/helia-2021-0008

    Article  Google Scholar 

  • Haridy MH, Ahmed BH, Mahdy AY, El-Said MAA, (2022) Effect of mutagens on yield and its components of two varieties of faba bean (Vicia faba L.). Pak J Biol Sci 25(4):296–303. https://doi.org/10.3923/pjbs.2022.296.303. PMID: 35638523

  • Haroon M, Zafar MM, Farooq MA, Afzal R, Batool M, Idrees F, Babar U, Khan AS, Mo H, Li L, Ren M (2020) Conventional breeding, molecular breeding and speed breeding; Brave approaches to revamp the production of cereal crops. Preprints, 2020110667.https://doi.org/10.20944/preprints202011.0667.v1

  • Hoffmann GR (1980) Genetic effects of dimethyl sulfate, diethyl sulfate, and related compounds. Mutation Res Rev Genet Toxicol 75(1):63–129. https://doi.org/10.1016/0165-1110(80)90028-7

    Article  CAS  Google Scholar 

  • Joshi AJ, Parmar VL, Zeal RA, Udutha JV, Madhuri M, (2021) Genetic variability analysis in sugarcane (Saccharum spp. complex) through in vitro chemical mutagenesis on callus culture. Pharma Innov 10(12):22–29. https://doi.org/10.22271/tpi.2021.v10.i12a.9629

  • Kalpande HV, Surashe SM, Badigannavar A, More A, Ganapathi TR (2022) Induced variability and assessment of mutagenic effectiveness and efficiency in sorghum genotypes [Sorghum bicolor (L.) Moench]. Int J Radiation Biol 98(2):230–243. https://doi.org/10.1080/09553002.2022.2003466

  • Khah MA, Alshehri MA, Filimban FZ, Alam Q, Aloufi S (2021) Influence of colchicine in causing severe chromosomal damage in microsporocytes of hard wheat (Triticum durum Desf.): Possible Mechanisms Genotoxic Relevance. Cytologia 87(2):137–143

    Google Scholar 

  • Kumar U, Chavan NS, Sawant SV, Yadav HK (2022) Evaluation and characterization of EMS induced mutant population of Gossypium herbaceum. Vegetos. https://doi.org/10.1007/s42535-022-00385-4

    Article  Google Scholar 

  • Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK (2021) Unboxing the molecular modalities of mutagens in cancer. Environ Sci Pollut Res 29:62111–62159. https://doi.org/10.1007/s11356-021-16726-w

    Article  CAS  Google Scholar 

  • Lian X, Liu Y, Guo H, Fan Y, Wu J, Guo H, Jiao C, Tang Z, Zhang L, Fan Y, Gou Z, Zhang C, Li T, Zeng F (2020) Ethyl methanesulfonate mutant library construction in Gossypium hirsutum L. for allotetraploid functional genomics and germplasm innovation. Plant J 103:858–868. https://doi.org/10.1111/tpj.14755

    Article  CAS  Google Scholar 

  • Lo KL, Chen YN, Chiang MY, Chen MC, Panibe JP, Chiu CC, Liu LW, Chen LJ, Chen CW, Li WH, Wang CS (2022) Two genomic regions of a sodium azide induced rice mutant confer broad-spectrum and durable resistance to blast disease. Rice (n y) 15(1):2. https://doi.org/10.1186/s12284-021-00547-z

    Article  CAS  Google Scholar 

  • Lundin C, North M, Erixon K, Walters K, Jenssen D, Alastair SH, Helleday GT (2005) Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res 33(12):3799–3811. https://doi.org/10.1093/nar/gki681

    Article  CAS  Google Scholar 

  • Menzies GE, Prior IA, Brancale A, Menzies GE, Prior IA, Brancale A, Reed SH, Lewis PD (2021) Carcinogen-induced DNA structural distortion differences in the RAS gene isoforms; the importance of local sequence. BMC Chemistry 15:51. https://doi.org/10.1186/s13065-021-00777-8

    Article  CAS  Google Scholar 

  • More UA (2022) Induced mutation: a promising way to produce genetically modified crop. Chapter 4, 17–22 pp. Editor; Patki V, Nemade K, Recent research at the intersection of science & technology

    Google Scholar 

  • Munda S, Begum T, Gogoi A, Pandey SK, Sarma N, La M (2022) Induced variations by gamma radiation and EMS on the agronomic traits, essential oil yield with its quality and their exploitation in Java citronella (Cymbopogon winterianus Jowitt). Int J Radiat Biol 98(8):1376–1387. https://doi.org/10.1080/09553002.2022.2038805

    Article  CAS  Google Scholar 

  • Naveed NH, Naz S, Khan WU, Yasin N, Khalid AM (2022) In vitro induced mutagenesis for early blight (Alternaria solani) resistance in potato (Solanum tuberosum L.). Available at SSRN: https://ssrn.com/abstract=4141360

  • Oeschger MP, Berlyn MKB (1974) A simple procedure for localized mutagenesis using nitrosoguanidine. Molec Gen Genet 134:77–83. https://doi.org/10.1007/BF00332814

    Article  CAS  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16. https://doi.org/10.1080/13102818.2015.1087333

    Article  CAS  Google Scholar 

  • Palshetkar MG, Sawardekar SV, Dalvi VV, Narangalkar AL, Dhekale JS (2022) Effect of mutagenic treatments on seed germination, seedling growth and survival of pigeon pea [Cajanus cajan (L.) Mill. Sp.]. Pharma Innov 11(2):1160–1164

    Google Scholar 

  • Priyadharsini P, Nirmala N, Dawn SS, Baskaran A, SundarRajan P, Gopinath KP, Arun J (2022) Genetic improvement of microalgae for enhanced carbon dioxide sequestration and enriched biomass productivity: Review on CO2 bio-fixation pathways modifications. Algal Res., 66, Article 102810. https://doi.org/10.1016/j.algal.2022.102810

  • Rajarajan D, Saraswathı R, Sassıkumar D, Ganesh SK (2014) Fixation of lethal dose and effect of ethyl methane sulfonate induced mutagenesis ın rice adt (R) 47. Life Sci Leaflets 58:65–72. https://petsd.org/ojs/index.php/lifesciencesleaflets/article/view/763

  • Rajdev V, Mehandi S, Prakash S, Singh A, Janeja HS (2022) Mutagenic effect of ethyl methane sulphonate (EMS) on wheat (Triticum aestivum L.). Pharma Innov J 20(11):2 22410

    Google Scholar 

  • Rasik S, Raina A, Laskar RA, Wani MR, Reshi ZA, Khan S, Ndhlala AR (2022) Lower doses of sodium azide and methyl methanesulphonate improved yield and pigment contents in vegetable cowpea [Vigna unguiculata (L.) Walp.]. S Afr J Bot 148:727–736. https://doi.org/10.1016/j.sajb.2022.04.034

    Article  CAS  Google Scholar 

  • Ravikesavan R, Jency JP (2022) Studies on mutagenic effectiveness and efficiency of gamma rays and EMS in kodo millet (Paspalum scrobiculatum). Int J Plant Soil Sci 34(2):6–14

    Google Scholar 

  • Rechkoblit O, Kolbanovskiy A, Landes H, Geacintov NE, Aggarwal AK (2017) Mechanism of error-free replication across benzo[a]pyrene stereoisomers by Rev1 DNA polymerase. Nat Commun 8:965. https://doi.org/10.1038/s41467-017-01013-5

    Article  CAS  Google Scholar 

  • Sabahi Z, Soltani F, Moein M (2018) Insight into DNA protection ability of medicinal herbs and potential mechanisms in hydrogen peroxide damages model. Asian Pac J Trop Biomed 8:120–129

    Article  Google Scholar 

  • Samadi N, Naghavi MR, Moratalla-López N, Alonso GL, Shokrpour M (2022) Morphological, molecular and phytochemical variations induced by colchicine and EMS chemical mutagens in Crocus sativus L. Food Chem Molec Sci 4:100086. https://doi.org/10.1016/j.fochms.2022.100086

    Article  CAS  Google Scholar 

  • Samatadze TE, Zoshchuk SA, Hazieva FM, Olga Yu Yurkevich OY, Svistunova NY, Morozov AI, Amosova AV, Muravenko OV (2019) Phenotypic and molecular cytogenetic variability in calendula (Calendula officinalis L.) cultivars and mutant lines obtained via chemical mutagenesis. Sci Rep 9: 9155. https://doi.org/10.1038/s41598-019-45738-3

  • Sharma V, Mishra A, Sharma H, Kumar P, Roy JK (2022) Unraveling novel and rare mutations for alpha-amylase and key transcription factors in EMS-induced wheat mutants for amylose by TILLING. Mol Biol Rep 49:5427–5436. https://doi.org/10.1007/s11033-022-07155-0

    Article  CAS  Google Scholar 

  • Singh K, Singh AK, Dwivedi DK, Khan NA, Singh SP (2022) Effects of sodium azide on seed germination and seedling growth in Kalanamak rice. Pharma Innov 11(7):711–713

    CAS  Google Scholar 

  • Tigova AV, Tigova AV, Soroka AI, Soroka AI, Dulnev PG, Dulnev PG (2022) Directions of genetic changes induced by new dimethyl sulfate derivatives in oil flax. Cytol Genet 56:37–45. https://doi.org/10.3103/S0095452722010121

    Article  Google Scholar 

  • Wei Y, Liu Y, Ali AM, Xiao R, Liang C, Meng Z, Wang Y, Wang P, Wang X, Zhang R (2022) Rich variant phenotype of Gossypium hirsutum L. saturated mutant library provides resources for cotton functional genomics and breeding. Industrial Crops and Products 186:115232. https://doi.org/10.1016/j.indcrop.2022.115232

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demet Altındal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Altındal, N., Altındal, D. (2024). Use of Chemical Mutagens in Field Crop Breeding. In: Kumar, N. (eds) Plant Mutagenesis. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-031-50729-8_7

Download citation

Publish with us

Policies and ethics