Skip to main content

Mutagenesis Breeding for Drought-Tolerance and Improvement of Oil and Seed Quality in Oilseed Crops: Case of Rapeseed and Sesame

  • Chapter
  • First Online:
Plant Mutagenesis

Abstract

Nowadays, world food security is more and more threatened by the extreme events caused by climate change associated with the increasing population. Particularly, drought is reported to be the most harmful for agricultural production, including oilseed crops. However, some key traits for adaptation to this stress may be lost as a result of the restriction of wild germplasm and natural genetic diversity due to overexploitation and climate change. Hence, mutagenesis breeding has been widely adopted to ensure a sustainable genetic gain in crop adaptation and tolerance to drought as well as other abiotic stresses. In oilseed crops, many efforts have been expended during the last 50 years in mutation breeding, mainly to improve oil and seed quality for feed, food, and industrial applications. Like other crops, major advances in rapeseed and sesame have been achieved in the alteration of seed oil fatty acid composition and modification of some bioactive compounds. However, fewer reports have been published on the improvement of drought tolerance. In this chapter, we will present and discuss the main achievements in drought tolerance and seed and oil quality in rapeseed and sesame through induced mutagenesis breeding. The emphasis will be on the application of random mutagenesis, which is widely accepted, via the use of physical or chemical mutagen agents. New genome editing techniques, such as TALEN, ZFN, and CRISPR-Cas9 targeted mutagenesis, are increasingly applied to edit some genes associated with seed quality and to target specific drought-associated genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali HMA, Shah SA (2013) Evaluation and selection of rapeseed (Brassica napus L.) mutant lines for yield performance using augmented design. J Anim Plant Sci 23:1125–1130

    Google Scholar 

  • Andargie M, Vinas M, Rathgeb A, Möller E, Karlovsky P (2021) Lignans of sesame (Sesamum indicum L.): a comprehensive review. Molecules 26:883

    Google Scholar 

  • Ansari SB, Raina A, Amin R, Jahan R, Malik S, Khan S (2021) Mutation breeding for quality improvement: a case study for oilseed crops. In: Bhat TA (ed) Mutagenesis, cytotoxicity and crop improvement: revolutionizing food science. 152756438X, 9781527564381. Cambridge Scholars Publishing, 514 p

    Google Scholar 

  • Ariharasutharsan G, Parameswari C, Vanniarajan C, Murugan E, Ramessh C (2019) Radio sensitivity studies in white seeded sesame (Sesamum indicum L.). Electron J Plant Breed 10(2):797–803

    Google Scholar 

  • Arslan Ç, Uzun B, Ülger S, İlhan Çağırgan M (2007) Determination of oil content and fatty acid composition of sesame mutants suited for intensive management conditions. J Am Oil Chem Soc 84(10):917–920

    Article  CAS  Google Scholar 

  • Ashri A (1981) Increased genetic variability for sesame improvement by hybridization and induced mutations. FAO Plant Production and Protection Papers (FAO), no 29

    Google Scholar 

  • Ashri A (1982) Status of breeding and prospects for mutation breeding in peanuts, sesame and castor beans. In: Improvement of oil-seed and industrial crops by induced mutations (proceedings of an advisory group meeting Vienna, 1980). IAEA, Vienna, pp 65–80

    Google Scholar 

  • Ashri A (1983) Mutagenic treatments and induced mutations in sesame (S. indicum). In: Improvement of leguminous and oil seed crops in latin america through induced mutations (proceedings of the 2nd research coordination meeting Maracaibo, Venezuela). IAEA, Vienna

    Google Scholar 

  • Ashri A (1984) Sesame improvement by large scale cultivars’ intercrossing and by crosses with indéhiscent and determinate lines. In: Ashri A (ed) Sesame and safflower: status and potentials (proceedings of the experts consultation meetingg Viterbo, Italy). FAO, Rome, pp 177–181

    Google Scholar 

  • Ashri A (1994) Modification and adaptation of the induced determinate sesame mutant by cross breeding and its evaluation. Mutation breeding of oil seed crops. IAEATEC DOC-781, pp 111–114

    Google Scholar 

  • Ashri A (1998) Sesame breeding. Plant Breed Rev 16:179–228

    Google Scholar 

  • Auld DL, Heikkinen MK, Erickson DA, Sernyk JL, Romero JE (1992) Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased levels of oleic acid. Crop Sci 32:657–662

    Article  CAS  Google Scholar 

  • Bao A, Burritt DJ, Chen H, Zhou X, Cao D, Tran LSP (2019) The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol 39(3):321–336

    Article  CAS  Google Scholar 

  • Basak M, Uzun B, Yol E (2019) Genetic diversity and population structure of the Mediterranean sesame core collection with use of genome-wide SNPs developed by double digest RAD-Seq. PLoS ONE 14(10):e0223757. https://doi.org/10.1371/journal.pone.0223757

    Article  CAS  Google Scholar 

  • Begum T, Dasgupta T (2010) A comparison of the effects of physical and chemical mutagens in sesame (Sesamum indicum L.). Genet Mol Biol 33(4):761–766. https://doi.org/10.1590/S1415-47572010005000090

  • Begum T, Dasgupta T (2011) Effect of mutagens on character association in sesame (Sesamum indicum L.). Pak J Bot 43(1):243–251

    Google Scholar 

  • Begum T, Dasgupta T (2014) Nduced genetic variability, heritability and genetic advance in sesame (Sesamum indicum L.). SABRAO J Breed Genet 46(1)

    Google Scholar 

  • Begum T, Dasgupta T (2015) Amelioration of seed yield, oil content and oil quality through induced mutagenesis in sesame (Sesamum indicum L.). Bangladesh J Bot 44(1):15–22

    Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  Google Scholar 

  • Bhatia CR, Nichterlein K, Maluszynski M (1999) Oilseed cultivars development from induced mutations and mutation altering fatty acid composition. Mutat Breed Rev 11:1e36

    Google Scholar 

  • Bhoi A, Yadu B, Chandra J, Keshavkant S (2022) Mutagenesis : A coherent technique to develop biotic stress resistant plants. Plant Stress 3:100053. https://doi.org/10.1016/j.stress.2021.100053

    Article  CAS  Google Scholar 

  • Boureima S, Eyletters M, Diouf M, Diop TA, Van Damme P (2011) Sensitivity of seed germination and seedling radicle growth to drought stress in sesame Sesamum indicum L. Res J Environ Sci 5(6):557

    Article  Google Scholar 

  • Boureima S, Oukarroum A, Diouf M, Cisse N, Van Damme P (2012) Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environ Exp Bot 81:37–43

    Article  CAS  Google Scholar 

  • Boureima S, Diouf S, Amoukou M, Van Damme P (2016) Screening for sources of tolerance to drought in sesame induced mutants: assessment of indirect selection criteria for seed yield. Int J Pure Appl Biosci 4(1):45–60

    Article  Google Scholar 

  • Bus A, Körber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123(8):1413–1423

    Article  Google Scholar 

  • Çelik Ö, Ayan A, Meriç S, Atak Ç (2021) Comparison of tolerance related proteomic profiles of two drought tolerant tomato mutants improved by gamma radiation. J Biotechnol 330:35–44. https://doi.org/10.1016/j.jbiotec.2021.02.012

    Article  CAS  Google Scholar 

  • Channaoui S, Hssaini L, Velasco L, Mazouz H, El Fechtali M, Nabloussi A (2020) Comparative study of fatty acid composition, total phenolics, and antioxidant capacity in rapeseed mutant lines. J Am Oil Chem Soc 97(4):397–407

    Article  CAS  Google Scholar 

  • Channaoui S, El Idrissi IS, Mazouz H, Nabloussi A (2019a) Reaction of some rapeseed (Brassica napus L.) genotypes to different drought stress levels during germination and seedling growth stages. OCL 26:23

    Google Scholar 

  • Channaoui S, Labhilili M, Mazouz H, El Fechtali M, Nabloussi A (2019b) Assessment of novel EMS-induced genetic variability in rapeseed (Brassica napus L.) and selection of promising mutants. Pak J Bot 51(5):1629–1636

    Google Scholar 

  • Channaoui S, Labhilili M, Mouhib M, Mazouz H, El Fechtali M, Nabloussi A (2019c) Development and evaluation of diverse promising rapeseed (Brassica napus L.) mutants using physical and chemical mutagens. OCL 26:35

    Google Scholar 

  • Chaudhary J, Deshmukh R, Sonah H (2019) Mutagenesis approaches and their role in crop improvement. Plants 8(11):467

    Google Scholar 

  • Chellamuthu M, Subramanian S, Swaminathan M (2020) Genetic potential and possible improvement of Sesamum indicum L. nuts and nut products in human health and nutrition. IntechOpen 11:1–18

    Google Scholar 

  • Chopra VL (2005) Mutagenesis: investigating the process and processing the outcome for crop improvement. Curr Sci 89:353–359

    CAS  Google Scholar 

  • Choudhary V, Jambhulkar SJ (2016) Genetic improvement of rapeseed mustard through induced mutations. In: Breeding oilseed crops for sustainable production. Academic Press, pp 377–390

    Google Scholar 

  • Chowdhury S, Datta AK, Saha A, Maity S (2009) Radiation-induced two oil rich mutants in sesame (Sesamum indicum L.). Indian J Sci Technol 2(7):51–59

    Google Scholar 

  • Corwin DL (2020) Climate change impacts on soil salinity in agricultural areas. Eur J Soil Sci 72:842–862

    Article  Google Scholar 

  • Daurova A, Daurov D, Zhapar K, Volkov D, Sapakhova Z, Shamekova M, Zhambakin K (2022) Improvement of breeding-valuable traits of rapeseed (Brassica napus) using mutagenesis. Intl J Agric Biol 28:219‒227

    Google Scholar 

  • Dossa K, Diouf D, Cissé N (2016a) Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Front Plant Sci 7:1522

    Article  Google Scholar 

  • Dossa K, Wei X, Li D, Fonceka D, Zhang Y, Wang L, Yu J, Boshou L, Diouf D, Cissé N, Zhang X (2016b) Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biol 16:1–16

    Article  Google Scholar 

  • Dossa K, Li D, Zhou R, Yu J, Wang L, Zhang Y, You J, Liu A, Mmadi MA, Fonceka D, Diouf D, Cissé N, Wei X, Zhang X (2019) The genetic basis of drought tolerance in the high oil crop Sesamum indicum. Plant Biotechnol J 17(9):1788–1803

    Article  CAS  Google Scholar 

  • Dossou SSK, Song S, Liu A, Li D, Zhou R, Berhe M, Wang L (2023) Resequencing of 410 sesame accessions identifies SINST1 as the major underlying gene for lignans variation. Int J Mol Sci 24(2):1055

    Article  CAS  Google Scholar 

  • Downey RK, Klassen AJ, Stringam GR (1980) Rapeseed and mustard. Hybridization of crop plants, (hybridizationof). ASA, CSA, Madison, WI, pp 495–509

    Google Scholar 

  • Downey RK (1990) Brassica oilseed breeding-achievements and opportunities. Plant Breed Abs 60(10):1165–1170

    Google Scholar 

  • Dwivedi SL, Stoddard FL, Ortiz R (2020) Genomic-based root plasticity to enhance abiotic stress adaptation and edible yield in grain crops. Plant Sci 295:110365

    Article  CAS  Google Scholar 

  • Ebrahimian E, Seyyedi SM, Bybordi A, Damalas CA (2019) Seed yield and oil quality of sunflower, safflower, and sesame under different levels of irrigation water availability. Agric Water Manag 218:149–157

    Article  Google Scholar 

  • Efendi B, Sabaruddin Z, Lukman H (2017) Mutation with gamma rays irradiation to assemble green super rice tolerant to drought stress and high yield rice (Oryza sativa L.). Int J Adv Sci Eng Tech 5:1–5

    Google Scholar 

  • Emrani SN, Arzani A, Saeidi G (2011) Seed viability, germination and seedling growth of canola (Brassica napus L.) as influenced by chemical mutagens. AfrJ Biotech 10(59):12602–12613

    Google Scholar 

  • Emrani N, Harloff HJ, Gudi O, Kopisch-Obuch F, Jung C (2015) Reduction in sinapine content in rapeseed (Brassica napus L.) by induced mutations in sinapine biosynthesis genes. Mol Breed 35(1):37

    Google Scholar 

  • Ercan AG, Taskin M, Turgut K (2004) Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet Resour Crop Evol 51(6):599–607

    Google Scholar 

  • Ferrie AMR, Taylor DC, MacKenzie SL, Rakow G, Raney JP, Keller WA (2008) Microspore mutagenesis of Brassica species for fatty acid modifications: a preliminary evaluation. Plant Breed 127(5):501–506

    Article  Google Scholar 

  • Geleta M, Bryngelsson T, Bekele E, Dagne K (2008) Assessment of genetic diversity of Guizotia abyssinica (Lf) Cass.(Asteraceae) from Ethiopia using amplified fragment length polymorphism. Plant Genet Resour 6(1):41–51

    Google Scholar 

  • Gormley IC, Bedigian D, Olmstead RG (2015) Phylogeny of pedaliaceae and martyniaceae and the placement of trapella in Plantaginaceae sl. Syst Bot 40(1):259–268. https://doi.org/10.1600/036364415X686558

  • Graef G, LaVallee BJ, Tenopir P, Tat M, Schweiger B, Kinney AJ, Gerpen V, Clemente TE (2009) A high-oleic-acid and low-palmitic-acid soybean: agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnol J 7:411–421

    Article  CAS  Google Scholar 

  • Hallajian M (2014) Integration of mutation and conventional breeding approaches to develop new superior drought-tolerant plants in rice (Oryza sativa). Annu Res Rev Biol 4:1173–1186

    Article  Google Scholar 

  • Hasan M, Seyis FATİH, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon RJ (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53:793–802

    Article  CAS  Google Scholar 

  • He J, Hu Y, Li WC, Fu FL (2009) Drought tolerant mutant induced by gamma-ray and sodium azide from maize calli. Maize genetics cooperation newsletter. Seed Sci Technol 83:53–55

    Google Scholar 

  • He Q, Xu F, Min MH, Chu SH, Kim KW, Park YJ (2019) Genome-wide association study of vitamin E using genotyping by sequencing in sesame (Sesamum indicum). Genes Genom 41(9):1085–1093

    Article  Google Scholar 

  • Hika G, Geleta N, Jaleta Z (2015) Genetic variability, heritability and genetic advance for the phenotypic traits in sesame (Sesamum indicum L.) populations from Ethiopia. Sci Technol Arts Res J 4(1) :20–26

    Google Scholar 

  • Huang H, Cui T, Zhang L, Yang Q, Yang Y, Xie K, Fan C (2020) Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus. Theor Appl Genet 133:2401–2411

    Article  CAS  Google Scholar 

  • Human S, Sihono S, Parno P (2012) Application of mutation techniques in sorghum breeding for improved drought tolerance. Atom Indones 32(1):35–43

    Article  Google Scholar 

  • Hussain S, Khan WM, Khan MS, Akhtar N, Umar N, Ali S, Ahmed S, Shah SS (2017) Mutagenic effect of sodium azide (NaN3) on M2 generation of Brassica napus L. (variety Dunkled). Pure Appl Biol 6(1):226–236

    Google Scholar 

  • Jayaramachandran M, Saravanan S, Motilal A, Prabhu PC, Hepziba SJ, Swain H, Boopathi NM (2020) Genetic improvement of a neglected and underutilised oilseed crop: sesame (Sesamum indicum L.) through mutation breeding. The Nucleus 63:293–302

    Article  Google Scholar 

  • Jhingan S, Harloff HJ, Abbadi A, Welsch C, Blümel M, Tasdemir D, Jung C (2023) Reduced glucosinolate content in oilseed rape (Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes. Sci Rep 13(1):2344

    Google Scholar 

  • Jo YD, Kim JB (2019) Frequency and spectrum of radiation-induced mutations revealed by whole-genome sequencing analyses of plants. Quant Beam Sci 3:7

    Article  CAS  Google Scholar 

  • Kang CW, Zanten LV (1996) Induced mutations in sesame for determinate growth, disease and lodging resistance and high yield potential in South Korea. Mut Breed Newsl 42:21–22

    Google Scholar 

  • Karunarathna NL, Wang HY, Harloff HJ, Jiang LX, Jung C (2020) Elevating seed oil content in a polyploid crop by induced mutations in seed fatty acid reducer genes. Plant Biotechnol J 18:2251–2266

    Article  CAS  Google Scholar 

  • Kawai T, Amano E (1991) Mutation breeding in Japan. In: Proceedings of the IAEA symposium on plant mutation breeding for crop improvement. June 18–22, 1990, vol I. IAEA, Vienna, pp 47–66

    Google Scholar 

  • Kharkwal MC, Pandey, R.N., Pawar, S.E., 2004. Mutation breeding for crop improvement. Plant breeding: Mendelian to molecular approaches. 601–645

    Google Scholar 

  • Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genom 18:31–41

    Article  CAS  Google Scholar 

  • Kobayashi T (1991) Cytogenetics of sesame (Sesamum indicum). In: Tsuchiya T, Gupta PK (eds) Developments in plant genetics and breeding, vol 2. Elsevier, pp 581–592. https://doi.org/10.1016/B978-0-444-88260-8.50036-7

  • Kouighat M, Hanine H, El Fechtali M, Nabloussi A (2021) First report of sesame mutants tolerant to severe drought stress during germination and early seedling growth stages. Plants 10(6):1166. https://doi.org/10.3390/plants10061166

    Article  CAS  Google Scholar 

  • Kouighat M, Nabloussi A, Adiba A, Fechtali ME, Hanine H (2022b) First study of improved nutritional properties and anti-oxidant activity in novel sesame mutant lines as compared to their wild-types. Plants 11(9):1099

    Article  CAS  Google Scholar 

  • Kouighat M, Channaoui S, Labhilili M, El Fechtali M, Nabloussi A (2020) Novel genetic variability in sesame induced via ethyl methane sulfonate. J Crop Improv 1–12. https://doi.org/10.1080/15427528.2020.1861155

  • Kouighat M, Hanine H, El Fechtali M, Nabloussi A (2022a) Assessment of some sesame mutants under normal and water-stress conditions. J Crop Improv 1–17. https://doi.org/10.1080/15427528.2022.2095685

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  Google Scholar 

  • Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S (2020) Genetically modified crops: current status and future prospects. Planta 251:91. https://doi.org/10.1007/s00425-020-03372-8

    Article  CAS  Google Scholar 

  • Kumari V, Chaudhary HK, Prasad R, Kumar A, Singh A, Jambhulkar S, Sanju S (2016) Effect of mutagenesis on germination, growth and fertility in sesame (Sesamum indicum L.). Annu Res Rev Biol 1–9. https://doi.org/10.9734/ARRB/2016/26983

  • Laurentin HE, Karlovsky P (2006) Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genet 7(1):10. https://doi.org/10.1186/1471-2156-7-10

  • Le Roux MSL, Burger NFV, Vlok M, Kunert KJ, Cullis CA, Botha AM (2021) EMS derived wheat mutant BIG8–1 (Triticum aestivum L.) a new drought tolerant mutant wheat line. IJMS 22(10):10. https://doi.org/10.3390/ijms22105314

  • Lee YH, Park W, Kim KS, Jang YS, Lee JE, Cha YL, Moon Y, Song Y, Lee K (2018) EMS-induced mutation of an endoplasmic reticulum oleate desaturase gene (FAD2–2) results in elevated oleic acid content in rapeseed (Brassica napus L.). Euphytica 214(2):28

    Google Scholar 

  • Li C, Hao M, Wang W, Wang H, Chen F, Chu W, Zhang B, Mei D, Cheng H, Hu Q (2018) An efficient CRISPR/Cas9 platform for rapidly generating simultaneous mutagenesis of multiple gene homoeologs in allotetraploid oilseed rape. Front Plant Sci 9:442. https://doi.org/10.3389/fpls.2018.00442

    Article  Google Scholar 

  • Liang J, Sun J, Ye Y, Yan X, Yan T, Rao Y, Zhou H, Le M (2021) QTL mapping of PEG-induced drought tolerance at the early seedling stage in sesame using whole genome re-sequencing. PLoS ONE 16(2):e0247681. https://doi.org/10.1371/journal.pone.0247681

    Article  CAS  Google Scholar 

  • Liu JW, DeMichele S, Bergana M, Bobik E, Hastilow C, Chuang LT, Mukerji P, Huang YS (2001) Characterization of oil exhibiting high γ-linolenic acid from a genetically transformed canola strain. J Am Oil Chem Soc 78(5):489–493

    Article  CAS  Google Scholar 

  • Liu W, Li D, Ren G, Zhang Y, Wen F, Han J, Zhang X (2017) Drought resistance of sesame germplasm resources and association analysis at adult stage. Scientia Agricultura Sinica 50(4):625–639

    Google Scholar 

  • Liu Y, Du Z, Lin S, Li H, Lu S, Guo L, Tang S (2022) CRISPR/Cas9-targeted mutagenesis of BnaFAE1 genes confers low-erucic acid in Brassica napus. Front Plant Sci 13

    Google Scholar 

  • Madhusudan K, Nadaf HL, Motagi BN, Singh S (2008) Induced mutants with improved nutraceutical traits in sesame (Sesamum indicum L.). In: Proceedings of the international symposium on induced mutations in plants (ISIM), Vienna, Austria, 12–15 Aug 2008. Bhabha Atomic Research Centre: Mumbai, India

    Google Scholar 

  • Maluszynski M, Ahloowalia BS, Sigurbjörnsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315

    Article  Google Scholar 

  • Mba C, Afza R, Bado S, Jain SM, Anthony P (2010) Induced mutagenesis in plants using physical and chemical agents. In: Plant cell culture: essential methods. Wiley-Blackwell, Hoboken, NJ, USA, Chapter 7, pp 111–130. ISBN 9780470686485

    Google Scholar 

  • Mehmood M, Khan MJ, Khan MJ (2022) Systematic analysis of HD-ZIP transcription factors in sesame genome and gene expression profiling of SiHD-ZIP class I entailing drought stress responses at early seedling stage. Mol Biol Rep 49:2059–2071. https://doi.org/10.1007/s11033-021-07024-2

    Article  CAS  Google Scholar 

  • Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Sci 282:679–682

    Google Scholar 

  • Mohapatra D, Bajaj YPS (1988) Hybridization in Brassica juncea × Brassica campestris through ovary culture. Euphytica 37(1):83–88

    Article  Google Scholar 

  • Murata J, Ono E, Yoroizuka S, Toyonaga H, Shiraishi A, Mori S, Tera M, Azuma T, Nagano AJ, Nakayasu M (2017) Oxidative rearrangement of sesamin by CYP92B14 co-generates twin dietary lignans in sesame. Nat Commun 8:2155

    Article  Google Scholar 

  • MVD (Mutant Variety Database) IAEA (2023) Available online: https://www.iaea.org/resources/databases/mutant-varieties-database. Accessed on 20 Feb 2023

  • Myint D, Gilani SA, Kawase M, Watanabe KN (2020) Sustainable sesame (Sesamum indicum L.) production through improved technology : an overview of production, challenges, and opportunities in Myanmar. Sustainability 12(9). https://doi.org/10.3390/su12093515

  • Nesi N, Delourme R, Brégeon M, Falentin C, Renard M (2008) Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C R Biol 331:763–771

    Article  CAS  Google Scholar 

  • Nyongesa BO, Were BA, Gudu S, Dangasuk OG, Onkware AO (2013) Genetic diversity in cultivated sesame (Sesamum indicum L.) and related wild species in East Africa. J Crop Sci Biotechnol 16(1):9–15

    Google Scholar 

  • Ogata T, Ishizaki T, Fujita M, Fujita Y (2020) CRISPR/Cas9-Targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PLoS ONE 15:e0243376

    Article  CAS  Google Scholar 

  • Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 131:63–69. https://doi.org/10.1016/j.plaphy.2018.04.025

    Article  CAS  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16. https://doi.org/10.1080/13102818.2015.1087333

    Article  CAS  Google Scholar 

  • Ono E, Waki T, Oikawa D, Murata J, Shiraishi A, Toyonaga H, Kato M, Ogata N, Takahashi S, Yamaguchi M (2019) Glycoside-specific glycosyltransferases catalyze regio-selective sequential glucosylations for a sesame lignan, sesaminol triglucoside. Plant J 101:1221–1233

    Article  Google Scholar 

  • Pandey SK, Das A, Rai P, Dasgupta T (2015) Morphological and genetic diversity assessment of sesame (Sesamum indicum L.) accessions differing in origin. Physiol Mol Biol Plants 21(4):519–529. https://doi.org/10.1007/s12298-015-0322-2

  • Parry MA, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Exp Bot 60(10):2817–2825

    Article  CAS  Google Scholar 

  • Pathak N, Rai AK, Kumari R, Bhat KV (2014) Value addition in sesame: a perspective on bioactive components for enhancing utility and profitability. Pharmacogn Rev 8(16):147

    Article  Google Scholar 

  • Poulsen G, Busch HM, Frauen L, Frese W, Friedt M, Gustafsson F, Ottosson F, Seyis G, Stemann B, Ulber E, Willner WL (2004) The European Brassica napus core collection—characterisation, evaluation and establishment. Cruciferae Newsl 25:115–116

    Google Scholar 

  • Prasad PVV, Staggenborg SA, Ristic Z (2008) Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Ahuja LR et al (eds) Response of crops to limited water : understanding and modeling water stress effects on plant growth processes. Advances in agricultural systems modeling series 1. ASA, CSSA, SSSA, 677 S. Segoe Rd., Madison, WI 53711, USA

    Google Scholar 

  • Quazi MH (1988) Interspecific hybrids between Brassica napus L. and B. oleracea L. developed by embryo culture. Theor Appl Genet 75(2):309–318

    Google Scholar 

  • Rai A, Bhujbal S, Jambhulkar SJ (2021) Development of abiotic stress tolerant mustard genotype through induced mutagenesis. In: Singh S, Singh P, Rangabhashiyam S, Srivastava KK (eds) Global climate change. Elsevier, Netherlands, pp 213–233

    Chapter  Google Scholar 

  • Raina A, Laskar R, Khursheed S, Amin R, Tantray Y, Parveen K, Khan S (2016) Role of mutation breeding in crop improvement-past, present and future. Asian Res J Agric 2:1–13

    Google Scholar 

  • Ramadoss BR, Ganesamurthy K, Angappan K, Gunasekaran M (2014) Evaluation of effect of gamma rays on sesame genotype TTVS 51 and TTVS 19 in M1 generation. Int J Dev Res. 4(2):273–277

    Google Scholar 

  • Ramkumar MK, Senthil Kumar S, Gaikwad K, Pandey R, Chinnusamy V, Singh NK, Singh AK, Mohapatra T, Sevanthi AM (2019) A novel stay-green mutant of rice with delayed leaf senescence and better harvest index confers drought tolerance. Plants 8(10):375

    Article  CAS  Google Scholar 

  • Renard M (1989) Situation actuelle de la sélection du colza en France. Bull G.C.I.R.C. 5:33–40

    Google Scholar 

  • Rivero RM, Mittler R, Blumwald E, Zandalinas SI (2022) Developing climate resilient crops: improving plant tolerance to stress combination. Plant J 109:373–389. https://doi.org/10.1111/tpj.15483

    Article  CAS  Google Scholar 

  • Röbbelen G (1990) Mutation breeding for quality improvement a case study for oilseed crops. Mut Breed Rev 6:1–43

    Google Scholar 

  • Röbbelen G, Kräling K (1992) Rapeseed oils high in single fatty acid contents for oleochemical uses. Ind Crops Prod 1(2–4):303–309

    Article  Google Scholar 

  • Rucker B, Robbelen G (1997) Mutants of Brassica napus with altered seed lipid fatty acid composition. In: Proceedings of 12th international symposium plant lipids. Kluwer Academic Publisher, Dordrecht, pp 316–318

    Google Scholar 

  • Ryu J, Lyu JI, Kim DG, Koo KM, Yang B, Jo YD, Kim SH, Kwon SJ, Ha BK, Kang SY, Kim JB, Ahn JW (2021) Single Nucleotide Polymorphism (SNP) discovery and association study of flowering times, crude fat and fatty acid composition in rapeseed (Brassica napus L.) mutant lines using Genotyping-by-Sequencing (GBS). Agronomy 11(3):508

    Google Scholar 

  • Sashidhar N, Harloff HJ, Potgieter L, Jung CT (2020) Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnol J 18:2241–2250

    Article  CAS  Google Scholar 

  • Savant KD, Kothekar VS (2011) Induction of variability in fatty acid profile in sesame (Sesamum indicum L.). J Phytol 3:01–03

    CAS  Google Scholar 

  • Schnurbush T, Mollers C, Becker HC (2000) A mutant of B. napus with increased palmitic acid content. Plant Breed 119:141–144

    Article  Google Scholar 

  • Sen A, Alikamanoglu S (2012) Analysis of drought-tolerant sugar beet (Beta vulgaris L.) mutants induced with gamma radiation using SDS-PAGE and ISSR markers. Mutat Res Fund Mol Mater 738:38–44. https://doi.org/10.1016/j.mrfmmm.2012.08.003

    Article  CAS  Google Scholar 

  • Sen A, Ozturk I, Yaycili O, Alikamanoglu S (2017) Drought tolerance in irradiated wheat mutants studied by genetic and biochemical markers. J Plant Growth Regul 36:669–679

    Article  CAS  Google Scholar 

  • Sengupta S, Datta AK (2003) Secondary chromosome associations in control and mutant plant types of Sesamum indicum L. Cytologia 68(2):141–145. https://doi.org/10.1508/cytologia.68.141

    Article  Google Scholar 

  • Shi S (1991) Application of mutagenesis in improvement of sesame varieties. Chin J Oil Crop Sci 2:93–96

    Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotech. J. 15:207–216

    Article  CAS  Google Scholar 

  • Siemens J (2002) Interspecific hybridization between wild relatives and Brassica napus to introduce new resistance traits into the oilseed rape gene pool. Czech JGenet Plant Breed 38:155–157

    Article  Google Scholar 

  • Singh R, Sharma SK (2007) Evaluation, maintenance, and conservation of germplasm. Adv Bot Res 45:465–481

    Article  Google Scholar 

  • Solanki IS (2005) Isolation of macromutations and mutagenic effectiveness and efficiency in lentil (Lens culinaris Medik). Indian J Genet 65:264–268

    Google Scholar 

  • Song S, You J, Shi L, Sheng C, Zhou W, Dossou SSK, Zhang X (2021) Genome-wide analysis of nsLTP gene family and identification of SiLTPs contributing to high oil accumulation in sesame (Sesamum indicum L.). Int J Mol Sci 22(10):5291

    Google Scholar 

  • Spasibionek S (2006) New mutants of winter rapeseed (B. napus L.) with changed fatty acid composition. Plant Breed 125:259–267

    Article  CAS  Google Scholar 

  • Stefansson BR, Hougen FW, Downey RK (1961) Note on the isolation of rape plants with seed oil free from erucic acid. Can J Plant Sci 41:218–219

    Article  Google Scholar 

  • Suprasanna P, Mirajkar SJ, Patade YV, Jain SM (2014) Induced mutagenesis for improving plant abiotic stress tolerance. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops. Wageningen Academic Publishers, pp 349–378

    Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945

    Article  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457

    Article  CAS  Google Scholar 

  • Teboul N, Gadri Y, Berkovich Z, Reifen R, Peleg Z (2020) Genetic architecture underpinning yield components and seed mineral–nutrients in sesame. Genes 11(10):1221

    Article  CAS  Google Scholar 

  • Tesfaye T, Tesfaye K, Keneni G, Ziyomo C, Alemu T (2022) Genetic diversity of Sesame (Sesamum indicum L) using high throughput diversity array technology. J Crop Sci Biotechnol 1–13

    Google Scholar 

  • Thakur JR, Sethi GS (1995) Comparative mutagenicity of gamma rays, ethyl methane sulphonate and sodium azide in barley (Hordeum vulgare L.). Crop Res 9:350–357

    Google Scholar 

  • Usman B, Nawaz G, Zhao N, Liao S, Liu Y, Li R (2020) Precise editing of the Ospyl9 gene by RNA-Guided Cas9 nuclease confers enhanced drought tolerance and grain yield in rice (Oryza Sativa L.) by regulating circadian rhythm and abiotic stress responsive proteins. Int J Mol Sci 21:7854

    Google Scholar 

  • Van Harten AM (1998) Mutation breeding, theory and practical applications. Cambridge University Press, Cambridge, United Kingdom, pp 127–140

    Google Scholar 

  • Van Zanten L (2001) Sesame improvement by induced mutations: results of the co-ordinated research project and recommendation for future studies. In: Van Zanten L (ed) Sesame improvement by induced mutations 1, Proc Final FAO/IAEA Co-ord. Res. Mtng, IAEA, Vienna, TECDOC-1195, pp 1–12

    Google Scholar 

  • Velasco L, Fernandez-Martinez JM (2002) Breeding oilseed crops for improved oil quality. J Crop Prod 5:309–344

    Article  CAS  Google Scholar 

  • Velasco L, Fernández-Martínez JM, Haro AD (2002) Inheritance of reduced linolenic acid content in the Ethiopian mustard mutant N2–4961. Plant Breed 121(3):263–265

    Article  CAS  Google Scholar 

  • Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G (2022) Biotechnological advances to improve abiotic stress tolerance in crops. Int J Mol Sci 23:12053. https://doi.org/10.3390/ijms231912053

    Article  CAS  Google Scholar 

  • Wang LH, Yu S, Tong CB, Zhao YZ, Liu Y, Song C, Zhang YX, Zhang XD, Wang Y, Hua W (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15:R39

    Article  Google Scholar 

  • Wang L, Zhang Y, Li D, Dossa K, Wang ML, Zhou R, Yu J, Zhang X (2019) Gene expression profiles that shape high and low oil content sesames. BMC Genet 20(1):45. https://doi.org/10.1186/s12863-019-0747-7

    Article  CAS  Google Scholar 

  • Wang Z, Zhou Q, Dossou SSK, Zhou R, Zhao Y, Zhou W, Zhang Y, Li D, You J, Wang L (2022) Genome-wide association study uncovers loci and candidate genes underlying phytosterol variation in sesame (Sesamum indicum L.). Agriculture 12(3). https://doi.org/10.3390/agriculture12030392

  • Wani AA (2009) Mutagenic effectiveness and efficiency of gamma rays, ethyl methane sulphonate and their combination treatments in chickpea (Cicer arietinum L.). Asian J Plant Sci 8:318–321

    Article  CAS  Google Scholar 

  • Warner K, Knowlton S (1997) Frying quality and oxidative stability of high-oleic corn oils. J Am Oil Chem Soc 74:1317–1322

    Article  CAS  Google Scholar 

  • Watts DG, El Mourid M (1988) Rainfall Patterns and probabilities in the semi-arid cereal production region of Morocco, USAID project No. 6080136

    Google Scholar 

  • Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Li D, Zhao Q, Zhu X, Zhu X, Li W, Fan D, Gao Y, Lu Y, Zhang X, Tang X, Zhou C, Zhu C, Liu L, Zhang X (2015) Genetic discovery for oil production and quality in sesame. Nat Commun 6(1):8609. https://doi.org/10.1038/ncomms9609

    Article  CAS  Google Scholar 

  • Wong RCS, Swanson E (1991) Genetic modification of canola oil: high oleic acid canola. In: Haberstroh C, Morris CE (eds) Fat and cholesterol reduced food. Gulf, Houston, pp 154–164

    Google Scholar 

  • Wu J, Yan G, Duan Z, Wang Z, Kang C, Guo L, Liu K, Tu J, Shen J, Yi B, Fu T, Li X, Ma C, Dai C (2020) Roles of the Brassica napus DELLA protein BnaA6. RGA, in modulating drought tolerance by interacting with the ABA signaling component BnaA10. ABF2. Front Plant Sci 11:577

    Google Scholar 

  • Yol E, Uzun B (2012) Geographical patterns of sesame accessions grown under mediterranean environmental conditions, and establishment of a core collection. Crop Sci 52(5):2206. https://doi.org/10.2135/cropsci2011.07.0355

    Article  Google Scholar 

  • Zhai Y, Cai S, Hu L, Yang Y, Amoo O, Fan C, Zhou Y (2019) CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L. Theor Appl Genet 132:2111–2123

    Article  CAS  Google Scholar 

  • Zhang GQ, Tang GX, Song WJ, Zhou WJ (2004) Resynthesizing Brassica napus from interspecific hybridization between Brassica rapa and B. oleracea through ovary culture. Euphytica 140(3):181–187

    Google Scholar 

  • Zhang K, Nie L, Cheng Q, Yin Y, Chen K, Qi F, Zou D, Liu H, Zhao W, Wang B, Li M (2019) Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR-Cas9 system. Biotechnol Biofuels 12:225

    Google Scholar 

  • Zhang G, Zhou W (2006) Genetic analyses of agronomic and seed quality traits of synthetic oilseed Brassica napus produced from interspecific hybridization of B. campestris and B. oleracea. J Genet 85:45–51

    Article  Google Scholar 

  • Zoclanclounon YAB, Rostás M, Chung NJ, Mo Y, Karlovsky P, Dossa K (2022) Characterization of peroxidase and laccase gene families and in silico identification of potential genes involved in upstream steps of lignan formation in sesame. Life 12(8):8. https://doi.org/10.3390/life12081200

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghani Nabloussi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nabloussi, A., Kouighat, M., Channaoui, S., Fechtali, M.E. (2024). Mutagenesis Breeding for Drought-Tolerance and Improvement of Oil and Seed Quality in Oilseed Crops: Case of Rapeseed and Sesame. In: Kumar, N. (eds) Plant Mutagenesis. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-031-50729-8_3

Download citation

Publish with us

Policies and ethics