Skip to main content

Use of Gamma Rays in Crop Improvement

  • Chapter
  • First Online:
Plant Mutagenesis

Abstract

Induced mutation mimics the natural process of spontaneous mutation, which is the main working force behind the evolution of living beings. Among various mutagens, the gamma ray emitted from the ‘60CO’ source is the most potent mutagen exploited for crop improvement, with the development of more than 50% of mutant varieties. The beauty of mutation breeding lies in its ability to improve one or a few traits while keeping the genetic makeup of the original variety intact. Most of the economic traits of important crops, right from yield, quality, and biotic and abiotic stresses to some novel variability which does not exist in the germplasm were successfully targeted for genetic improvement through gamma-ray-induced mutation. A large number of mutants were reported to have been induced through gamma rays in various crops and were either used directly as new varieties or as donor parents in hybridization program to develop improved varieties and hybrids. Among 3402 mutant varieties released worldwide for commercial cultivation in various crops including horticultural crops, gamma ray has contributed 1716 mutant varieties (50.44%). In the era of molecular biology, induced mutation is gaining more importance as mutants are the ideal genetic material for identification, isolation of genes, and study of the structure and functions of mutated genes. The recent advances in molecular biology, like next-generation sequencing (NGS), changed the scenario of mutant screening with MutMap (mapping-by-sequencing) and MutChromSeq (assorting the desired genes in the shortest time), thereby making the induced mutation relevant even in the genomic era. The present book chapter discusses the use of gamma rays in crop improvement through the creation of invaluable genetic variability to combat the challenges posed by climate change and population explosion and its contribution to food and nutritional security by developing mutant varieties throughout the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe A, Kosugi S, Yoshida K et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178. https://doi.org/10.1038/nbt.2095

    Article  CAS  Google Scholar 

  • Addai IK, Salifu B (2016) Selection of mutants with improved growth and total grain yield in the M2 generation of pearl millet (Pennicetum glaceum L.) in the Northern region of Ghana. J Agron 15:88–93

    Article  CAS  Google Scholar 

  • Aditya K, Verma N, Srivastava N, Chakraborty M, Prasad K (2017) Effect of gamma rays on seed germination, plant survival and quantitative characters on two varieties of soybean (Glycine max. L. merrill) in M1 generation. Bull Environ Pharmacol Life Sci 1:259–265

    Google Scholar 

  • Ahloowalia B, Maluszynski M, Nichterlein K (2004) Global impact of mutation derived varieties. Euphytica 135(2):187–204

    Article  Google Scholar 

  • Akhar FK, Bagheri A, Moshtaghi N, Nezami A (2011) The effect of gamma radiation on freezing tolerance of chickpea (Cicer aretinum L.) at in vitro culture. J Biol Environ Sci 5(14):63–70

    Google Scholar 

  • Albokari MMA, Alzahrani SM, Alsalman AS (2012) Radio-sensitivity of some local cultivars of wheat (Triticum aestivum L.) to gamma irradiation. Bangladesh J Bot 41(1):1–5

    Google Scholar 

  • de Andrade A, Tulmann-Neto A, Tcacenco FA, Marschalek R, Pereira A, de O’Neto AM, Scheuermann KK, Wickert E, Noldin JA (2018) Development of rice (Oryza sativa) lines resistant to aryloxyphenoxypropionate herbicides through induced mutation with gamma rays. Plant Breed 137:364–369

    Google Scholar 

  • de Andrade A, Tulmann-Neto A, Tcacenco FA, Marschalek R, Pereira A, de O’Neto AM, Scheuermann KK, Wickert E, Noldin JA (2021) Gamma-rays in the development of rice lines tolerant to aryloxyphenoxypropionate herbicides. In: Sivasankar S et al (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. International Atomic Energy Agency. https://doi.org/10.1079/9781789249095.0029

  • Andrew-Peter-Leon MT, Ramchander S, Kumar KK, Muthamilarasan M, Pillai MA (2021) Assessment of efficacy of mutagenesis of gamma-irradiation in plant height and days to maturity through expression analysis in rice. PLoS ONE 16(1):e0245603. https://doi.org/10.1371/journal.pone.0245603

    Article  CAS  Google Scholar 

  • Anuragi H, Yadav R, Sheoran R (2022) Gamma-rays and EMS induced resistance to mungbean yellow mosaic India virus in mungbean (Vigna radiata L. Wilczek) and its validation using linked molecular markers. Int J Rad Biol 98(1):69–81

    Google Scholar 

  • Ariraman M, Gnanamurthy S, Dhanavelb D, Bharathi T, Murugan S (2014) Mutagenic effect on seed germination, seedling growth and seedling survival of Pigeon pea (Cajanus cajan L. Millsp). Int Lett Nat Sci 16:41–49

    Google Scholar 

  • Austin RS, Vidaurre D, Stamatiou G et al (2011) Next-generation mapping of Arabidopsis genes. Plant J 67(4):715–725. https://doi.org/10.1111/j.1365-313X.2011.04619.x

    Article  CAS  Google Scholar 

  • Auti S, Ahire D (2015) Seed storage protein of mungbean mutants. Int J Bioassays 4(08):4223–4227

    CAS  Google Scholar 

  • Badere RS, Choudhary AD (2007) Effectivity and efficiency of gamma rays, sodium azide and ethylmethane sulphonate in linseed. BIOINFOLET 4(3):181–187

    Google Scholar 

  • Badigannavar A, Manjaya JG (2012) Improving the bioavailability of seed phosphorous in low phytic acid soybean mutants. Electron J Plant Breed 3(1):643–648

    Google Scholar 

  • Badigannavar A, Girish G, Jayalakshmi, Ganapathi TR (2018) Gamma ray induced genetic improvement of sorghum landraces for grain yield and charcoal rot tolerance. Electron J Plant Breed 9(3):894–898

    Google Scholar 

  • Badigannavar AM, Jambhulkar SJ, Manjaya JG, Souframanien J, Das BK, Badigannavar AM, Ganapathi TR, Suprasanna P (2021) Radiation technology for genetic enhancement of crop plants. In: Tyagi AK, Mohanty AK (eds) Non-power applications of nuclear technologies. Bhabha Atomic Research Centre, Mumbai, India, pp 33–49

    Google Scholar 

  • Begum T, Dasgupta T (2015) Amelioration of seed yield, oil content and oil quality through induced mutagenesis in sesame (Sesamum indicum L.). Bangladesh J Bot 44(1):15–22

    Google Scholar 

  • Belfield EJ, Gan X, Mithani A, Brown C, Jiang C et al (2012) Genome wide analysis of mutations in mutant lineages selected following fast neutron irradiation mutagenesis of Arabidopsis thaliana. Genome Res 22:1306–1315

    Article  CAS  Google Scholar 

  • Bhagwat B, Duncan EJ (1998) Mutation breeding of highgate (Musa acuminata, AAA) for tolerance to Fusarium oxysporum f. sp. cubense using gamma irradiation. Euphytica 101:143–150. https://doi.org/10.1023/A:1018391619986

    Article  Google Scholar 

  • Bharathi RR, Ganesamurthy K, Angappan K, Gunasekaran M (2014) Mutagenic effectiveness and efficiency of gamma rays in sesame (Sesamum indicum L.). Glob J Mol Sci 9(1):01–06

    Google Scholar 

  • Bonde P, Thorat BS, Gimbhavnekar VJ (2020) Effect of gamma radiation on germination and seedling parameters of mungbean (Vigna radiata). Int J Curr Microbiol 11:1582–1587

    Google Scholar 

  • Boureima S, Diouf M, Silme RS, Diop T, Van Damme P, Cagirgan MI (2009) Radio-sensitivity of African sesame cultivars to gamma rays. Turkish J Field Crops 14(2):181–190

    Google Scholar 

  • Brahmi I, Mabrouk Y, Charaabi K, Delavault P, Simier P, Belhadj O (2014) Induced mutagenesis through gamma radiation in chickpea (Cicer arietinum L.): developmental changes and improved resistance to the parasitic weed Orobanche foetida Poir. Int J Adv Res 2(11):670–684

    Google Scholar 

  • Chun JB, Ha BK, Jang DS, Song M, Lee KJ, Kim JB et al (2012) Identification of mutations in OASA1 gene from a gamma-irradiated rice mutant population. Plant Breed 131:276–281. https://doi.org/10.1111/j.1439-0523.2011.01933.x

    Article  CAS  Google Scholar 

  • Desai SP, Jadhav AG, Ramteke AR, Dhole VJ, Bapat VA, Gaikwad NB (2021a) Differential effects of gamma rays, EMS, and SA on biological parameters of Ajara ghansal a non- basmati aromatic rice landrace from Kolhapur, Maharashtra. Agric Res J 58(3):383–389

    Google Scholar 

  • Desai SP, Jadhav AG, Ramteke AR, Dhole VJ, Bapat VA, Gaikwad NB (2021b) Genetic improvement of two Indian non-basmati aromatic rice landraces through physical and chemical mutagenesis. Int J Radiat Biol 98(1):82–89

    Article  Google Scholar 

  • Dewanjee S, Sarkar KK (2018) Evaluation of performance of induced mutants in mungbean (Vigna radiata L. Wilczek). Legume Res 41(2):213–217

    Google Scholar 

  • Dewi AK, Dwimahyani I, Sobrizal (2020). Application of induced mutation technique to improve genetic variability of Indonesian traditional rice varieties. In: The 1st international conference on genetic resources and biotechnology, IOP conference series: earth environmental science, p 482. https://doi.org/10.1088/1755-1315/482/1/012016

  • Dhanasekar P, Souframanien J, Dhole VJ, Hingane AJ, Sivasankar S (2023) Physical mutagenesis for induction of resistance against legume pod borer (Maruca vitrata F.) in cowpea (Vigna unguiculata L. Walp). In: International conference on, “Pulses: Smart Crops for Agricultural Sustainability and Nutritional Security”, 2023 at NASC, New Delhi

    Google Scholar 

  • Dhole VJ, Maheshwari JJ, Gawande VL (2006) Studies on EMS and gamma rays induced mutations in soybean (G. max L. Merril). In: Second national plant breeding congress, pp 117–118

    Google Scholar 

  • Dhole VJ, Souframanien J, Reddy KS, Petwal VC (2023) Comparison of effectiveness and efficiency of electron beam over gamma rays to induce novel mutations in mungbean (Vigna radiata L. Wilczek). Appl Radiat Isot 194:110719

    Google Scholar 

  • Dhole VJ, Reddy KS (2010) Gamma rays induced moisture stress tolerant long root mutant in mungbean (Vigna radiata L. Wilczek). Electron J Plant Breed 1:1299–1305

    Google Scholar 

  • Dhulgande GS, Dhale DA, Pachkore GL, Satpute RA (2011) Mutagenic effectiveness and efficiency of gamma rays and ethyl methanesulphonate in pea (Pisum sativum L.). J Exp Sci 2(3):07–08

    Google Scholar 

  • Do K (2009) Socio-economic impacts of mutant rice varieties in Southern Vietnam. Induced plant mutations in the genomics era. In: International symposium on induced mutations in plants; Vienna (Austria), Food and Agriculture Organization of the United Nations, Rome (Italy); ISBN 978-92-5-106324-8; pp 65–68

    Google Scholar 

  • Dorvlo IK, Amenorpe G, Amoatey HM, Amiteye S, Kutufam JT, Afutu E, Asare-Bediako E, Darkwa AA (2022) Improvement in cowpea variety Videza for traits of extra earliness and higher seed yield. Heliyon 8:e12059

    Article  CAS  Google Scholar 

  • Du Y, Luo S, Li X, Yang J, Cui T et al (2017) Identification of substitutions and small insertion-deletions induced by carbon-ion beam irradiation in Arabidopsis thaliana. Front Plant Sci 8:1851

    Article  Google Scholar 

  • Dwinanda P, Syukur S, Suliansyah I (2020) Induction of mutations with gamma ray radiation to improve the characteristics of wheat (Triticum aestivum L.) genotype IS-Jarissa. In: OP conference series: earth environmental science, p 497. IOP Publishing. https://doi.org/10.1088/1755-1315/497/1/012013

  • Etther Y, Gahukar SJ, Akhare A, Patil AN, Jambhulkar SJ, Gawande M (2019) Mutagenic effectiveness and efficiency of gamma rays, ethyl methyl sulfonate and their synergistic effects in pigeon pea (Cajanus cajan L.). J Pharmacogn Phytochem 8(3):489–493

    Google Scholar 

  • Fekih R, Takagi H, Tamiru M et al (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS ONE 8:1–10. https://doi.org/10.1371/journal.pone.0068529

    Article  CAS  Google Scholar 

  • Feng L, Shimizu A, Nishio T, Tsutsumi N, Kato H (2019) Comparison and characterization of mutations induced by gamma-ray and carbon-ion irradiation in rice (Oryza sativa L.) using whole-genome resequencing. Gene Genome Genet 9:3743–3751

    Google Scholar 

  • Fujita M, Kiribuchi-Otobe C, Yoshioka T, Matsunaka H, Yanagisawa T, Yoshida H et al (2004) A new hard white wheat cultivar “Tamaizumi”. Bull Natl Inst Crop Sci 5:1e17

    Google Scholar 

  • Fujita M, Kiribuchi-Otobe C, Matsunaka H, Seki M, Yoshioka T, Yoshida H et al (2007) A new waxy wheat cultivar “Uraramochi”. Bull Natl Inst Crop Sci 8:109e29

    Google Scholar 

  • Futsuhara Y (1968) Breeding of a new rice variety Reimei by gamma-ray irradiation. Gamma Field Symposia 7:87–109

    Google Scholar 

  • Ganapathi TR, Ujjappa KM, Badigannavar A (2016) Characterization of gamma ray induced clones in ‘Giant Cavendish’ banana (AAA) for morphological and yield contributing traits. Int J Fruit Sci 16:310–322

    Article  Google Scholar 

  • Gautam V, Swaminathan M, Akilan M, Gurusamy A, Suresh M, Kaithamalai B, John Joel A (2021) Early flowering, good grain quality mutants through gamma rays and EMS for enhancing per day productivity in rice (Oryza sativa L.). Int J Radiat Biol 97(12):1716–1730. https://doi.org/10.1080/09553002.2021.1987563

  • Gawande SM, Ghuge SB, Kalpande HV, Rathod ST (2022) Optimal lethal dose (LD50) of gamma rays and EMS induced mutagenesis in PBNS-12 variety of safflower (Carthamus tinctorius L.). J Pharm Innov 11(5):1554–1557

    Google Scholar 

  • Gnankambary K, Batieno TBJ, Sawadogo N, Sawadogo M, Yonli D, Ouedraogo TJ (2019) Assessment of radio-sensitivity for three cowpea genotypes to gamma irradiation. Int J Genet Mol Biol 11(2):29–33

    Article  CAS  Google Scholar 

  • Gowthami R, Vanniarajanb C, Souframanien J, Veni K, Renganathan VG (2021) Efficiency of electron beam over gamma rays to induce desirable grain-type mutation in rice (Oryza sativa L.). Int J Radiat Biol 97(5):727–736

    Google Scholar 

  • Goyal S, Wani MR, Raina A, Laskar RA, Khan S (2021) Phenotypic diversity in mutagenized population of urd bean (Vigna mungo L. Hepper). Heliyon 7(5):e06356

    Google Scholar 

  • Gregory W (1960) The peanut NC 4x, a milestone in crop breeding. Crops Soils 12(8):12–13

    Google Scholar 

  • Guan CY, Liu CL, Chen SY, Peng Q, Li X, Gaun M (2006) High oleic acid content materials of rapeseed (Brassica napus) produced by radiation breeding. Acta Agron Sin 11:1625–1629

    Google Scholar 

  • Gunasekaran A, Pavadai P (2015) Studies on induced physical and chemical mutagenesis in groundnut (Arachis hypogia). Int Lett Nat Sci 8:25–35

    Google Scholar 

  • Gupta SK, Manjaya JG (2017) Gamma rays induced mutation for low phytic acid and trypsin inhibitor content in soybean. Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore (India); ISBN 978-93-80769-83-7; Worldcat; 2017; p. 84; National symposium on applications of radioisotopes and tracer techniques in agriculture and environment; Coimbatore (India); 16–17 Feb 2017

    Google Scholar 

  • Gupta R, Islam MM, Begum SN, Akram W, Md Islam S (2021) Determination of lethal dose of rice (Oryza sativa L.) genotypes by radio sensitivity test. Plant Arch 20(1):1912–1916

    Google Scholar 

  • Harrison L (2013) Radiation induced DNA damage, repair and therapeutics. DNA Repair Cancer 92–136

    Google Scholar 

  • Hasim AA, Shamsiah A, Hussein S (2021) Induced mutations using gamma ray and multiplication of plantlet through micro cross section culture of banana (Musa acuminata cv. Berangan). In: IOP conference series: Earth and Environmental Science, vol 757. https://doi.org/10.1088/1755-1315/757/1/012007

  • Hwang SG, Chapagain S, Lee JW, Han AR, Jang CS (2017) Genome-wide transcriptome profiling of genes associated with arsenate toxicity in an arsenic-tolerant rice mutant. Plant Physiol Biochem 120:40–51. https://doi.org/10.1016/j.plaphy.2017.09.019

    Article  CAS  Google Scholar 

  • Hwang J, Ahn J-W, Kwon S-J, Kim J-B, Kim S, Kang S-Y, Kim DS (2014) Selection and molecular characterization of a high tocopherol accumulation rice mutant line induced by gamma irradiation. Mol Boil Rep 41. https://doi.org/10.1007/s11033-014-3660-1

  • Ichida H, Morita R, Shirakawa Y, Hayashi Y, Abe T (2019) Targeted exome sequencing of unselected heavy-ion beam-irradiated populations reveals less-biased mutation characteristics in the rice genome. Plant J 98:301–314

    Article  CAS  Google Scholar 

  • Ignacimuthu S, Babu CR (1989) Induced variation in protein quantity and quality in the wild and cultivated urd and mungbean. Indian J. Genet. 49(2):173–181

    Google Scholar 

  • Jambhulkar SJ, Joshua DC (1999) Induction of plant injury, chimera chlorophyll and morphological mutations in sunflower using gamma rays. Helia 22(31):63–74

    Google Scholar 

  • Joshi-Saha A, Reddy KS, Petwal VC, Dwivedi J (2015) Identification of novel mutants through electron beam and gamma irradiation in chickpea (Cicer arietinum L.). J Food Legum 28(2):1–6

    Google Scholar 

  • Julia T, Renuka T, Nanita H, Jambhulkar S (2018) Mutagenic effectiveness and efficiency of gamma rays in Indian mustard (Brassica juncea L. Czern and Coss). Int J Curr Microbiol App Sci 7(3):3376–3386

    Google Scholar 

  • Kalpande HV, Surashe SM, Badigannavar A, More A, Ganapathi TR (2022) Induced variability and assessment of mutagenic effectiveness and efficiency in sorghum genotypes (Sorghum bicolor L. Moench). Int J Radiat Biol 98(2):230–243. https://doi.org/10.1080/09553002.2022.2003466

  • Kang R, Seo E, Kim G et al (2020) Radio sensitivity of cowpea plants after gamma-ray and proton-beam irradiation. Plant Breed Biotechnol 8:281–292

    Article  Google Scholar 

  • Kaur M, Thind KS, Sanghera GS, Kumar R, Kashyap L (2016) Gamma rays induced variability for economic traits, quality and red rot resistance in sugarcane (Saccharum spp.). Int J Sci Environ Technol 5(2):355–365

    Google Scholar 

  • Kenzhebayeva SS, Doktyrbay G, Capstaff NM, Sarsu F, Omirbekova NZ, Eilam T et al (2017) Searching a spring wheat mutation resource for correlations between yield, grain size, and quality parameters. J Crop Improv 31:208e28

    Google Scholar 

  • Kenzhebayeva S, Abekova A, Atabayeva S, Yernazarova G, Omirbekova N, Zhang G et al (2019) Mutant lines of spring wheat with increased iron, zinc, and micronutrients in grains and enhanced bioavailability for human health. Bio Med Res Int 9692053. https://doi.org/10.1155/2019/9692053

  • Khadke SG, Kothekar VS (2011) Genetic improvement of moth bean (Vigna aconitifolia (Jacq.) Marechal) through mutation breeding. In: Khan S, Kozgar MI (eds) Breeding of pulse crops. Kalyani Publishers, Ludhiana, pp 34–54

    Google Scholar 

  • Khah MA, Shaikh N, Bhala VP, Verma RC (2020) Evaluation of mutagenic efficiency and effectiveness of gamma irradiation doses in two cultivars of bread wheat (Triticum aestivum L.). Res J Agric For 8(1):29–33

    Google Scholar 

  • Khan MH, Tyagi SD (2010) Studies on effectiveness and efficiency of gamma rays, EMS and their combination in soybean (Glycine max L. Merrill.). J Plant Breed Crop Sci 2(3):055–058

    Google Scholar 

  • Khan MH, Tyagi SD (2013) A review on induced mutagenesis in soybean. J Cereals Oilseeds 4(2):19–25

    Article  CAS  Google Scholar 

  • Khannetah KR, Pushpam R, Ganesan KN, Kumar KK, Chandrashekar CN, Pillai MA (2021) Appraising LD50 dosage for physical mutagen (Gamma rays) in CR1009 and CR1009 sub1 rice varieties. J Pharmacogn Phytochem 10(1):2715–2719

    Google Scholar 

  • Kim SH, Ryu J, Kim WJ et al (2019) Identification of a new GmSACPD-C allele in high stearic acid mutant Hfa180 derived from gamma-ray irradiation. Mol Breed 39:17. https://doi.org/10.1007/s11032-019-0928-0

    Article  CAS  Google Scholar 

  • Kim SH, Kim SY, Ryu J, Jo YD, Choi HI, Kim JB, Kang SY (2021) Suggested doses of proton ions and gamma-rays for mutation induction in 20 plant species. Int J Radiat Biol 97(11):1624–1629. https://doi.org/10.1080/09553002.2021.1969053

  • Kong X, Kasapis S, Bao J (2015) Viscoelastic properties of starches and flours from two novel rice mutants induced by gamma irradiation. LWT Food Sci Technol 60:578–582. https://doi.org/10.1016/j.lwt.2014.08.034

    Article  CAS  Google Scholar 

  • Konzak CF, Nilan RA, Wagner J et al (1965) Efficient chemical mutagenesis. Radiat Bot 5(Suppl.):49–70

    Google Scholar 

  • Kozgar MI (2014) Mutation breeding in chickpea: perspectives and prospects for food security. De Gruyter Open Ltd, Warsaw/Berlin

    Google Scholar 

  • Kumar A, Paul S, Thakur G (2020) Determination of lethal dose (LD50) and effects of gamma rays and ethyl methane sulphonate (EMS) induced mutagenesis in linseed (Linum usitatissimum L.). Int J Curr Microbiol App Sci 9(10):2601–2608

    Google Scholar 

  • Kumar A, Paul S, Sood VK, Thakur G, Thakur R (2021) Effectiveness and efficiency of gamma rays and EMS (Ethyl methane sulphonate) in linseed (Linum usitatissimum L.). Himachal J Agric Res 47(2):163–168

    Google Scholar 

  • Kundagrami J, Basak S, Maiti B, Dasa T, Gose K, Pal A (2009) Agronomic, genetic and molecular characterization of MYMV tolerant mutant lines of Vigna mungo. Int J Plant Breed Genet 3(1):1–10

    Article  CAS  Google Scholar 

  • Kusmiyati F, Sutarno MG, Sas A, Herwibawa B (2018) Mutagenic effects of gamma rays on soybean (Glycine max L.) germination and seedlings. In: OP conference series: earth and environmental science, vol 102, p 012059. https://doi.org/10.1088/1755-1315/102/1/012059

  • Lagoda PJI (2012) Effects of radiation on living cells and plants. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. Joint FAO/IAEA division of nuclear techniques in food and agriculture international atomic energy agency, Vienna, pp 123–134

    Google Scholar 

  • Lal JP, Tomer AK (2009) Genetic enhancement of lentil (Lens culinaris Medikus) for drought tolerance through induced mutations. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 151–154

    Google Scholar 

  • Landge SP, Barve YY, Gupta RK, Bhadauria SS, Thakre RP, Pawar SE (2009) Development of B. napus canola quality varieties suitable for Indian agro-climatic conditions by induced mutations. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 322–324

    Google Scholar 

  • Laskar RA, Khan S (2017) Mutagenic effectiveness and efficiency of gamma rays and phenotyping of induced mutations in lentil cultivars. Int. Lett. Nat. Sci. 64:17–31

    Google Scholar 

  • Le Caër S (2011) Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water 3:235–253

    Google Scholar 

  • Li G, Jain R, Chern M, Pham NT, Martin JA et al (2017) The sequences of 1504 mutants in the model rice variety Kitaake facilitate rapid functional genomic studies. Plant Cell 29:1218–1231

    Article  CAS  Google Scholar 

  • Mabrouk Y, Charaabi K, Mahiout D, Rickauer M, Belhadj O (2018) Evaluation of chickpea (Cicer arietinum L.) irradiation-induced mutants for resistance to Ascochyta blight in controlled environment. Braz J Bot. https://doi.org/10.1007/s40415-018-0458-8

  • Manjunath NG, Saravanan S, Sushmitha R, Arumugam Pillai M, Sheela J, Shoba D (2020) Mutagenic efficiency and effectiveness of gamma rays and EMS in groundnut (Arachis hypogaea L.). Electron J Plant Breed 11(03):875–880

    Google Scholar 

  • Matova PM, Kamutando CN, Sarsu F, Magorokosho C, Labuschagne M (2021) Determining the optimum gamma irradiation dose for developing novel maize genotypes. J Crop Improv. https://doi.org/10.1080/15427528.2020.1850591

    Article  Google Scholar 

  • Mejri S, Hemissi I, Brinsi C, Asmi A, Mouldi S, Mabrouk Y (2021) Dose dependent effects of gamma radiation on growth parameters of Lens culinaris Medikus subsp. culinaris. Acta Sci Agric 5(7):83–89

    Google Scholar 

  • Mondal S, Badigannavar AM, D’souza SF (2011) Induced variability for fatty acid profile and molecular characterization of high oleate mutant in cultivated groundnut (Arachis hypogaea L.). Plant Breed 130:242–247

    Article  CAS  Google Scholar 

  • Muhammad A, Wazir SM, Ullah H, Ullah R, Afridi S (2015) Performance of selected irradiated cotton varieties during M2 generation. Am-Eurasian J Agric Environ Sci 15(2):154–160

    Google Scholar 

  • Muller HJ (1928) The measurement of gene mutation rate in Drosophila, its high variability, and its dependence upon temperature. Genet 13:279–357

    Article  CAS  Google Scholar 

  • Munyinda K, Kanenga K (2018) Creating variability in cowpea for adaptation and value addition through induced mutation. In: FAO/IAEA international symposium on plant mutation breeding and biotechnology, Vienna, Austria, p 17

    Google Scholar 

  • MVD, IAEA (2023). www.mvd.iaea.org

  • Nadaf HL, Biradar K, Murthy GSS, Krishnaraj PU, Bhat RS, Pasha MA, Yerimani AS (2017) Novel mutations in Oleoyl-PC Desaturase (ahFAD2B) identified from new high oleic mutants induced by gamma rays in peanut. Crop Sci 57:2538–2546

    Article  CAS  Google Scholar 

  • Nepal S, Ojha BR, Sanchez Meador AJ, Gaire SP, Shilpakar C (2014) Effect of gamma rays on germination and photosynthetic pigments of maize (Zea mays L.) inbreds. Int J Res 1(5):511–525

    Google Scholar 

  • Olasupo F, Ilori C, Stanley E, Owoeye T, Igwe D (2018) Genetic analysis of selected mutants of cowpea (Vigna unguiculata L. Walp) using simple sequence repeat nd rcbL markers. Am J Plant Sci 9:2728–2756

    Article  CAS  Google Scholar 

  • Oloriz MI, Gil V, Rojas L, Veitia N, Hofte M, Jimenez E (2011) Selection and characterization of sugarcane mutants with improved resistance to brown rust obtained by induced mutation. Crop Pasture Sci 62:1037–1044

    Article  Google Scholar 

  • Omar H, Mukhtar Ali Ghanim A, Ingelbrecht I (2018) Mutation induction in pearl millet (Pennisetum Glaucum) and finger millet (Eleusine Coracana) for dry lands in Sudan. In: FAO/IAEA international symposium on plant mutation breeding and biotechnology; Vienna (Austria); IAEA-CN-263

    Google Scholar 

  • Ousmane SD, Elegba W, Danso K (2013) Radio-sensibility of pearl millet (Pennisetum glaucum L. R. Br.) and cowpea (Vigna unguiculata L. Walp.) seeds germination and seedling growth. Int J Innov Stud 4(4):665–671

    Google Scholar 

  • Pane FJD, Lopez SC, Cantamutto MA, Domenech MB, Castro-Franco M (2018) Effect of different gamma radiation doses on the germination and seedling growth of wheat and triticale cultivars. Autr J Crop Sci 12(12):1921–1926

    Article  Google Scholar 

  • Perez-Leon NJ, Castro-Menduina RI, Echevarria-Hernandez A (2019) Genetic improvement of Chickpea cultivars (Cicer arietinum L.) by gamma irradiation. Biotecnol Appl 36(2):2231–2234

    Google Scholar 

  • Pestanana RKN, Amorim EP, Ferreira CF, de Oliveira Amorim VB, Oliveira LS, da Silva Ledo CA, de Oliveira e Silva S (2011) Agronomic and molecular characterization of gamma ray induced banana (Musa sp.) mutants using a multivariate statistical algorithm. Euphytica 178:151–158

    Google Scholar 

  • Poli Y, Basava RK, Panigrahy M, Vinukonda VP, Dokula NR, Voleti SR, Desiraju S, Neelamraju S (2013) Characterization of a Nagina 22 rice mutant for heat tolerance and mapping of yield traits. Rice 6(1):36

    Article  Google Scholar 

  • Prabhu SC, Mothilal A, Anantharaju P, Rajan Babu V, Jeyaprakash P, Vanniarajan C (2022) Effect and sensitivity of gamma irradiation to various biometrical traits of cowpea (Vigna unguiculata L. Walp.). Biol Forum 14(3):711–723

    Google Scholar 

  • Raina A, Laskar RA, Tantray YR, Khursheed S, Wani MR, Khan S (2020) Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Sci Rep 10:3687. https://doi.org/10.1038/s41598-020-60601-6

  • Raina A, Laskar RA, Wani MR, Jan BL, Ali S, Khan S (2022) Gamma rays and sodium azide induced genetic variability in high-yielding and biofortified mutant lines in cowpea (Vigna unguiculata L. Walp.). Front Plant Sci 13:911049

    Google Scholar 

  • Rajarajan D, Saraswathi R, Sassikumar D, Ganesh SK (2014) Effectiveness and efficiency of gamma ray and ems induced chlorophyll mutants in rice adt (r) 47. Glob J Biol Agric Health Sci 3(3):211–218

    Google Scholar 

  • Rajderkar SS, Sakhare SB (2020) Mutagenic effectiveness and efficiency of gamma rays and EMS in Glycine max (L.) Merill. Int J Food Sci Nutr 2(2):26–29

    Google Scholar 

  • Raut Y, Vaidya ER, Sasane P (2021) Effect of gamma rays on germination and plant survival in sesame (Sesamum indicum L.). J Pharma Innov 10(12):392–394

    Google Scholar 

  • Rifnas LM, Vidanapathirana NP, Silva TD, Dahanayake N, Subasinghe S, Weerasinghe S, Nelka SAP, Rohanadeera H, Madushani WGC (2022) Effect of gamma radiation on morphological changes and vegetative growth in sunflower (Helianthus annuus L.). AGRIEAST 16(2):25–34

    Google Scholar 

  • Rizwan M, Aslam M, Asghar MJ, Abbas G, Shah TM, Shimelis H (2017) Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis. PLoS ONE 12(2):e0171846. https://doi.org/10.1371/journal.pone.0171846

  • Ro PV, At DH (2000) Improvement of traditional local varieties through induced mutations using nuclear techniques. In: Quy TD, Dong NH, Thanh LD, Quyen NHM, Truc PD, Ro PV (eds) Seminar on methodology for plant mutation breeding for quality: effective use of physical/chemical mutagens. AGI, VAEC, STA, JAERI, Hanoi, pp 90–94

    Google Scholar 

  • Roslim DI, Herman, Fiatin I (2015) Lethal dose 50 (LD50) of mungbean (Vigna radiata L. Wilczek) cultivar Kampar. SABRAO J Breed Genet 47(4):510–516

    Google Scholar 

  • Roy U, Basak D, Nath S (2019) Mutagenic sensitivity analysis of gamma irradiations in Cowpea (Vigna unguiculata L. Walp). Emerg Life Sci Res 5(2):12–16

    Google Scholar 

  • Ruswandi D, Agustian EP, Anggia AO, Canama H, Marta SR, Suryadi E (2014) Mutation breeding of maize for anticipating global climate change in Indonesia. Asian J Agric Res 8(5):234–247

    CAS  Google Scholar 

  • Saibari I, Barrijal S, Mouhib M, Belkadi N, Hamim A (2023) Gamma irradiation-induced genetic variability and its effects on the phenotypic and agronomic traits of groundnut (Arachis hypogaea L.). Front Genet 14:1124632

    Google Scholar 

  • Salih MAM, Abdalla AH (2008). Induced mutation in pearl millet (Pennisetum glaucum) International symposium on induced mutations in plants (ISIM). In: Joint FAO/IAEA division of nuclear techniques in food and agriculture, plant breeding section, International Atomic Energy Agency (IAEA), Vienna (Austria). Book of abstracts (IAEA-CN-167), p 207

    Google Scholar 

  • Sanchez-Martin J, Steuernagel B, Ghosh S et al (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17(1):221

    Article  Google Scholar 

  • Sansenya S, Hua Y, Chumanee S, Phasai K, Sricheewin C (2017) Effect of gamma irradiation on 2-acetyl-1-pyrroline content, GABA content and volatile compounds of germinated rice (Thai upland rice). Plants 6:18. https://doi.org/10.3390/plants6020018

    Article  CAS  Google Scholar 

  • Sao R, Sahu PK, Patel RS, Das BK, Jankuloski L, Sharma D (2022) Genetic improvement in plant architecture, maturity duration and agronomic traits of three traditional rice landraces through gamma ray-based induced mutagenesis. Plants 11:3448. https://doi.org/10.3390/plants11243448

    Article  Google Scholar 

  • Sarduie-Nasab S, Sharifi-Sirchi GR, Torabi-Sirchi MH (2010) Assessment of dissimilar gamma irradiations on barley (Hordeum vulgare spp.). J Plant Breed Crop Sci 2(4):59–63

    Google Scholar 

  • Sarwar G, Ahmad M (2003) Development of new high yielding mungbean variety ‘AEM-96’ through induced mutation. SAARC J Agric 1:173–180

    Google Scholar 

  • Schneeberger K, Ossowski S, Lanz C et al (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551. https://doi.org/10.1038/nmeth0809-550

    Article  CAS  Google Scholar 

  • Sellapillai L, Dhanarajan A, Raina A, Ganesan A (2022) Gamma ray induced positive alterations in morphogenetic and yield attributing traits of finger millet (Eleusine coracana (L.) Gaertn.) in M2 generation. Plant Sci Today. https://doi.org/10.14719/pst.1807

  • Shah TM, Atta BM, Mirza JI, Haq MA (2009) Screening of chickpea (Cicer arietinum) induced mutants against Fusarium wilt. Pakistan J Bot 41:1945–1955

    Google Scholar 

  • Sharif A, Khan MR (2000) Effect of gamma irradiation on certain characters of Gossypium hirsutum L. Pakistan J Agric Res 16(2):114–117

    Google Scholar 

  • Sharma KD, Katna G, Sharma N, Nag R, Sharma BK, Joshi-Saha A (2018) Mutagenic effectiveness and efficiency of gamma rays, ethyl methane sulphonate and their combination treatments in chickpea (Cicer arietinum L.). Int J Curr Microbiol App Sci 7(11):509–515

    Google Scholar 

  • Shirasawa K, Hirakawa H, Nunome T, Tabata S, Isobe S (2016) Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato. Plant Biotechnol J 14:51–60

    Article  CAS  Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. Cambridge, Mass: CABI, Wallingford, Oxford shire, UK

    Google Scholar 

  • Sivasamy M, Kumar J, Jayaprakash P, Vikas VK, Vinod KS et al (2014) A high yielding semi-dwarf dicoccum wheat-Nilgiri Khapli (HW 1098) released for cultivation to dicoccum growing areas of India. J Wheat Res 6:173e5

    Google Scholar 

  • Song JY, Kim DS, Lee MC, Lee KJ, Kim JB, Kim SH et al (2012) Physiological characterization of gamma-ray induced salt tolerant rice mutants. Aust J Crop Sci 6:421–429

    CAS  Google Scholar 

  • Souframanien J, Reddy KS, Petwal VC, Dwivedi J (2016) Comparative effectiveness and efficiency of electron beam and 60Co γ-rays in induction of mutations in black gram (Vigna mungo L. Hepper). J Food Leg 29(1):1–6

    Google Scholar 

  • Souframanien J, Ganapathi TR (2021) Mutation breeding in India: accomplishments and socio-economic impact. Plant Breed Genet Newsl 46:23–25

    Google Scholar 

  • Spencer-Lopes MM, Jankuloski L, Ghanim AMA, Matijevic M, Kodym (2018) Physical mutagenesis. In: Spencer-Lopes MM, Forster BP, Jankuloski L (eds) Manual on mutation breeding. Food and Agriculture Organization of the United Nations International Atomic Energy Agency, Vienna, pp 5–49

    Google Scholar 

  • Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry (3rd edn). John Wiley and Sons Inc., NY

    Google Scholar 

  • Stadler LJ (1928a) Mutations in Barley induced by x-rays and radium. Sci 68:186–187

    Article  CAS  Google Scholar 

  • Stadler LJ (1928b) Genetic effects of x-rays in maize. Proc Natl Acad Sci USA 14:69–75

    Article  CAS  Google Scholar 

  • Suprasanna P, Rupali C, Desai N, Bapat V (2008) Partial desiccation augments plant regeneration from irradiated embryogenic cultures of sugarcane. Plant Cell, Tissue Organ Cult 92(1):101–105

    Article  Google Scholar 

  • Suprasanna P (2010) Biotechnological Interventions in sugarcane improvement: strategies, methods and progress. BARC Newsl 47–53

    Google Scholar 

  • Syed AS, Ali I, Shah SJA, Rahman K, Ahmad M (2003) Improvement of rapeseed and mustard by induced mutations and in vitro techniques. (IAEA-TECDOC-1369) international atomic energy agency, Vienna (Austria); 157 p; ISBN 92-0-101603-4; Worldcat; ISSN 1011-4289; Worldcat; pp 133–141

    Google Scholar 

  • Takagi H, Uemura A, Yaegashi H et al (2013a) MutMap-Gap: Whole-genome re-sequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200:276–283

    Article  CAS  Google Scholar 

  • Takagi H, Abe A, Yoshida K et al (2013b) QTL-Seq: rapid mapping of quantitative trait loci in rice by whole-genome resequencing of DNA from two bulked populations. Plant J 74:174–183. https://doi.org/10.1111/tpj.12105

    Article  CAS  Google Scholar 

  • Umavathi S, Mullainathan L (2015) Physical and chemical induced mutagenesis study for identifying lethality dose in chick pea (Cicer arietinum L.) var. Co-4. Int Lett Nat Sci 8:1–5

    Google Scholar 

  • Usharani KS, Ananda Kumar CR, Vanniarajan C (2017) Fixation of lethal dose 50 and effect of mutagens in M1 generation under laboratory condition. Int J Curr Microbiol App Sci 6(7):1356–1365

    Article  CAS  Google Scholar 

  • Usharani KS, Ananda Kumar CR (2015) Mutagenic efficiency and effectiveness of gamma rays and EMS and their combination in inducing chlorophyll mutations in M2 generation of urd bean (Vigna mungo (L.) Hepper). Electron J Plant Breed 6(1):210–217

    Google Scholar 

  • Vairam N, Lavanya SA, Muthamilan M, Vanniarajan C (2016) Screening of M3 mutants for yellow vein mosaic virus resistance in greengram (Vigna radiata L. Wilczek). Int J Plant Sci 11(2):265–269

    Google Scholar 

  • Vanniarajan C, Ganeshram S, Souframanien J, Veni K, Anandhi Lavanya S, Kuralarasan V (2017) Gamma rays induced urdbbean (Vigna mungo L. Hepper) mutants with YMV resistance, good batter quality and bold seeded type. Legume Res. https://doi.org/10.18805/LR-3824

  • Veni K, Vanniarajan C, Souframanien J (2017) Probit analysis and effect of electron beam and gamma rays in Black gram (Vigna mungo L. Hepper). Electron J Plant Breed 8(3):950–955

    Google Scholar 

  • Verma RC, Purbiya R (2017) Effects of gamma radiations on seed germination and morphological characteristics of pea (Pisum sativum L.). Indian J Plant Sci 6(3):21–25

    Google Scholar 

  • Wang Q, Xiong H, Guo H, Zhao L, Xie Y, Gu J, Zhao S, Ding Y, Liu L (2023) Genetic analysis and mapping of dwarf gene without yield penalty in a g-ray-induced wheat mutant. Front Plant Sci 14:1133024. https://doi.org/10.3389/fpls.2023.1133024

    Article  Google Scholar 

  • Wanga MA, Shimelis H, Horn LN, Sarsu F (2020) The effect of single and combined use of gamma radiation and ethylmethane sulfonate on early growth parameters in sorghum. Plants 9:827. https://doi.org/10.3390/plants9070827

  • Yoshihara R, Hase Y, Sato R, Takimoto K, Narumi I (2010) Mutational effects of different LET radiations in rpsL transgenic Arabidopsis. Int J Radiat Biol 86:125–131

    Article  CAS  Google Scholar 

  • Zafar SA, Maqbool A, Naeem M (2020) Mutagenic effectiveness of gamma rays in inducing polygenic variability in maize (Zea mays L.). J Agric Basic Sci 05(1):14–23

    Google Scholar 

  • Zambrano AY, Demey JR, Fuchs M, Gonzalez V, Rea R, De Sousa O, Gutierrez Z (2003) Selection of sugarcane plants resistant to SCMV. Plant Sci 165:221–225. https://doi.org/10.1016/S0168-9452(03)00162-6

    Article  CAS  Google Scholar 

  • Zhang MX, Xu JL, Luo RT, Shi D, Li ZK (2003) Genetic analysis and breeding use of blast resistance in japonica rice mutant R917. Euphytica 130:71–76. https://doi.org/10.1023/A:1022380626371

  • Zulfiqar S, Ishfaq S, Ikram M, Nawaz MA, ur Rahman M (2021) Characterization of gamma-rays-induced spring wheat mutants for morphological and quality traits through multivariate and GT Bi-plot analysis. Agron 11. https://doi.org/10.3390/agronomy11090000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Janardan Dhole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhole, V.J., Jegadeesan, S., Punniyamoorthy, D. (2024). Use of Gamma Rays in Crop Improvement. In: Kumar, N. (eds) Plant Mutagenesis. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-031-50729-8_11

Download citation

Publish with us

Policies and ethics