Skip to main content

Semi-Analytic Solutions for the Bending-Bending-Torsion Coupled Forced Vibrations of a Rotating Wind Turbine Blade by Means of Green’s Functions

  • Conference paper
  • First Online:
Advances in Nonlinear Dynamics, Volume I (ICNDA 2023)

Part of the book series: NODYCON Conference Proceedings Series ((NCPS))

Included in the following conference series:

  • 32 Accesses

Abstract

In recent years, wind power has received continuous attention as a renewable energy source in the context of carbon neutrality. Blades in wind turbines with elongated structures are susceptible to damage due to aeroelastic instability. In this chapter, the basic solution of the system is derived by Laplace transformation and Green’s function method, and then the system of the second category of Fredholm integral equations about steady-state forced vibration of blades can be derived according to the principle of superposition. The second type of Fredholm integral equation system is discretized numerically, and finally, a semi-analytical solution for the bending-bending-torsion coupled forced vibration of rotating wind turbine blades is obtained. The validity of the solution presented in this chapter is verified by comparing the first-order flag mode and first-order lead/lag mode with previously obtained results. The results show that the inflow ratio at the hub and the angular velocity of rotation have a significant influence on the blade’s flag displacement and lead/lag displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, S.F., Wang, S.C.: Impacts of wind energy on environment: a review. Renew. Sustain. Energy Rev. 49, 437–443 (2015)

    Article  Google Scholar 

  2. Li, J.J., Wang, G.D., Li, Z.H., Yang, S.L., Chong, W.T., Xiang, X.B.: A review on development of offshore wind energy conversion system. Int. J. Energy Res. 44(12), 9283–9297 (2020)

    Article  Google Scholar 

  3. Park, J.-H., Park, H.-Y., Jeong, S.-Y., Lee, S.-I., Shin, Y.-H., Park, J.-P.: Linear vibration analysis of rotating wind-turbine blade. Curr. Appl. Phys. 10(2), S332–S334 (2010)

    Article  Google Scholar 

  4. Kumar, A., Dwivedi, A., Paliwal, V., Patil, P.P.: Free vibration analysis of Al 2024 wind turbine blade designed for Uttarakhand region based on FEA. Procedia Technol. 14, 336–347 (2014)

    Article  Google Scholar 

  5. Luczak, M., Manzato, S., Peeters, B., Branner, K., Berring, P., Kahsin, M.: Updating finite element model of a wind turbine blade section using experimental modal analysis results. Shock. Vib. 2014, 1–12 (2014)

    Article  Google Scholar 

  6. Li, J., Chen, J., Chen, X.: Dynamic characteristics analysis of the offshore wind turbine blades. J. Mar. Sci. Appl. 10(1), 82–87 (2011)

    Article  MathSciNet  Google Scholar 

  7. Gürsel, K.T., Çoban, T., Özdamar, A.: Vibration analysis of rotor blades of a farm wind-power plant. Math. Comput. Appl. 17(2), 164–175 (2012)

    Google Scholar 

  8. Abu-Hilal, M.: Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions. J. Sound Vib. 267(2), 191–207 (2003)

    Article  ADS  Google Scholar 

  9. Li, X.Y., Zhao, X., Li, Y.H.: Green’s functions of the forced vibration of Timoshenko beams with damping effect. J. Sound Vib. 333(6), 1781–1795 (2014)

    Article  ADS  Google Scholar 

  10. Zhao, X., Chen, B., Li, Y.H., Zhu, W.D., Nkiegaing, F.J., Shao, Y.B.: Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions. J. Sound Vib. 464, 115001 (2020)

    Article  Google Scholar 

  11. Zhao, X., Zhu, W.D., Li, Y.H.: Closed-form solutions of bending-torsion coupled forced vibrations of a piezoelectric energy harvester under a fluid vortex. J. Vib. Acoust. 144(2), 021010 (2022)

    Article  Google Scholar 

  12. Li, L., Li, Y.H., Liu, Q.K., Lv, H.W.: A mathematical model for horizontal axis wind turbine blades. Appl. Math. Model. 38(11–12), 2695–2715 (2014)

    Article  MathSciNet  Google Scholar 

  13. Li, L., Zhang, X., Li, Y.: Analysis of coupled vibration characteristics of wind turbine blade based on Green’s functions. Acta Mech. Solida Sin. 29(6), 620–630 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

Some parameters used for Eqs. (3)–(5) are listed here:

$$ {\displaystyle \begin{array}{c}{a}_1=E{I}_{zy}/E{I}_y,{a}_2=m{\omega}^2/E{I}_y,{a}_3=-2m\Omega {\beta}_{\textrm{p}}\omega /E{I}_y,{a}_4=E{I}_{zy}/E{I}_z,{a}_5=-2m\Omega {\beta}_{\textrm{p}}\omega /E{I}_z,\\ {}{a}_6{=}\left(m{\omega}^2{-}m{\Omega}^2\right)/E{I}_z,{a}_7{=}-m{\Omega}^2\left[\left({k}_{m2}^2{-}{k}_{m1}^2\right)\left({\cos}^2\theta {-}{\sin}^2\theta \right){+}\left({k}_{m2}^2{+}{k}_{m1}^2\right){\omega}^2/{\Omega}^2\right]/\left(\textrm{GJ}\right),\\ {}{b}_1=1/E{I}_y,{b}_2=1/E{I}_z,{b}_3=1/\left(\textrm{GJ}\right),{A}_1=-{\beta}_{\textrm{p}}\rho ac{\Omega}^2/2,{A}_2=\cos \theta \rho ac{\Omega}^2/2,\\ {}{A}_3=\left[c/2+\left(c/4\right)\cos \theta -{e}_{\textrm{A}}\right]\rho ac{\Omega}^2/2,{A}_4=\left(\sin \theta \cos \theta \rho a{c}^2\right)/8,{A}_5=-\left(\cos \theta \rho a{c}^2\right)/8,\\ {}{B}_1=\left(-\lambda R\cos \theta \rho ac{\Omega}^2\right)/2,{B}_2=-\left({\sin}^2\theta \rho a{c}^2\right)/8,{B}_3=-\left(\sin \theta \rho a{c}^2\right)/8,\\ {}{A}_4^{\prime }={A}_4{\omega}^2,{A}_5^{\prime }={A}_5{\omega}^2,{B}_2^{\prime }={B}_2{\omega}^2,{B}_3^{\prime }={B}_3{\omega}^2,\end{array}} $$
$$ {\displaystyle \begin{array}{c}{f}_1(x)=\left(\rho ac{\Omega}^2/2\right)\left\{\left(1-{\beta}_{\textrm{p}}^2\right){x}^2\sin \theta -\lambda Rx\cos \theta +\left[c/2+\left(c/4\right)\cos \theta -{e}_{\textrm{A}}\right]{\beta}_{\textrm{p}}x\right\},\\ {}{p}_1(x)=\left(\rho ac{\Omega}^2/2\right)\left\{{\lambda}^2{R}^2\cos \theta -\lambda \left(1-{\beta}_{\textrm{p}}^2\right) Rx\sin \theta -\left({C}_{\textrm{DO}}/a\right){x}^2\right\},\\ {}{\textrm{Non}}_1(x)={A}_2{x}^2{\int}_0^LQ\left({x}_0\right){G}_{\Phi}\left(x,{x}_0\right) d x,\\ {}{\textrm{Non}}_2(x)={B}_1x{\int}_0^LQ\left({x}_0\right){G}_{\Phi}\left(x,{x}_0\right)d{x}_0,\\ {}{f}_w(x)={\int}_0^L\left[{f}_1\left(\xi \right)+{\textrm{Non}}_1\left(\xi \right)\right]{G}_{W1}\left(x,\xi \right) d\xi +{\int}_0^L\left[{p}_1\left(\xi \right)+{\textrm{Non}}_2\left(\xi \right)\right]{G}_{W2}\left(x,\xi \right) d\xi, \\ {}{f}_v(x)={\int}_0^L\left[{f}_1\left(\xi \right)+{\textrm{Non}}_1\left(\xi \right)\right]{G}_{V1}\left(x,\xi \right) d\xi +{\int}_0^L\left[{p}_1\left(\xi \right)+{\textrm{Non}}_2\left(\xi \right)\right]{G}_{V2}\left(x,\xi \right) d\xi \end{array}} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X., Jiang, X., Zhu, W., Li, Y. (2024). Semi-Analytic Solutions for the Bending-Bending-Torsion Coupled Forced Vibrations of a Rotating Wind Turbine Blade by Means of Green’s Functions. In: Lacarbonara, W. (eds) Advances in Nonlinear Dynamics, Volume I. ICNDA 2023. NODYCON Conference Proceedings Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50631-4_8

Download citation

Publish with us

Policies and ethics