Skip to main content

New Elemental Damping Model for Nonlinear Dynamic Response

  • Conference paper
  • First Online:
Advances in Nonlinear Dynamics, Volume I (ICNDA 2023)

Part of the book series: NODYCON Conference Proceedings Series ((NCPS))

Included in the following conference series:

  • 48 Accesses

Abstract

In this chapter, a new elemental damping model has been proposed to incorporate un-modeled energy dissipation in the simulation of seismic response of large-scale structures. It addresses the problems of existing elemental damping models in calibrating an elemental damping ratio for a desired global damping ratio and unintended significant coupling effects between global vibration modes. The new model maintains consistency between the elemental and the global damping ratios and avoids unnecessary complex calibration. It also allows the elemental damping ratio to be better correlated with the states of elemental stresses, deformations, damage variables, or any other internal state variables, such that a rational-based update on the elemental damping ratio can be used to simulate unmodeled, changing energy dissipation during nonlinear dynamic response. Examples have been used to demonstrate the performance of the new model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rayleigh, J.W.S.B.: The Theory of Sound, vol. 2. Macmillan, New York (1896)

    Google Scholar 

  2. Deierlein, G.G., Reinhorn, A.M., Willford, M.R.: Nonlinear structural analysis for seismic design. Technical report. NEHRP Seismic Design Technical Brief No. 4 (2010)

    Google Scholar 

  3. Chrisp, D.J.: Damping models for inelastic structures. Master’s thesis. University of Canterbury, Christchurch (1980)

    Google Scholar 

  4. Léger, P., Dussault, S.: Seismic-energy dissipation in MDOF structures. J. Struct. Eng. 118(5), 1251–1269 (1992)

    Article  Google Scholar 

  5. Bernal, D.: Viscous damping in inelastic structural response. J. Struct. Eng. 120(4), 1240–1254 (1994)

    Article  MathSciNet  Google Scholar 

  6. Carr, A.: Damping models for inelastic analyses. In: Proceedings of the Asia-Pacific Vibration Conference, p. 42. Kyongju, Korea (1997)

    Google Scholar 

  7. Hall, J.F.: Problems encountered from the use (or misuse) of Rayleigh damping. Earthquake Eng. Struct. Dyn. 35(5), 525–545 (2006)

    Article  Google Scholar 

  8. Charney, F.A.: Unintended consequences of modeling damping in structures. J. Struct. Eng. 134(4), 581–592 (2008)

    Article  Google Scholar 

  9. Chopra, A.K., McKenna, F.: Modeling viscous damping in nonlinear response history analysis of buildings for earthquake excitation. Earthquake Eng. Struct. Dyn. 45(2), 193–211 (2016)

    Article  Google Scholar 

  10. Luco, J.E., Lanzi, A.: A new inherent damping model for inelastic time-history analyses. Earthquake Eng. Struct. Dyn. 46(12), 1919–1939 (2017). https://doi.org/10.1002/eqe.2886

    Article  Google Scholar 

  11. Lanzi, A., Luco, J.E.: Elastic velocity damping model for inelastic structures. J. Struct. Eng. 144(6), 04018065 (2018)

    Article  Google Scholar 

  12. Hall, J.F.: Performance of viscous damping in inelastic seismic analysis of moment-frame buildings. Earthquake Eng. Struct. Dyn. 47(14), 2756–2776 (2018)

    Article  Google Scholar 

  13. Lee, C.L.: Proportional viscous damping model for matching damping ratios. Eng. Struct. 207, 110178 (2020). https://doi.org/10.1016/j.engstruct.2020.110178

    Article  ADS  Google Scholar 

  14. Lee, C.L.: Type 4 bell-shaped proportional damping model and energy dissipation for structures with inelastic and softening response. Comput. Struct. 258, 106663 (2022). https://doi.org/10.1016/j.compstruc.2021.106663

    Article  Google Scholar 

  15. Puthanpurayil, A.M., Lavan, O., Carr, A.J., Dhakal, R.P.: Elemental damping formulation: an alternative modelling of inherent damping in nonlinear dynamic analysis. Bull. Earthquake Eng. 14(8), 2405–2434 (2016). https://doi.org/10.1007/s10518-016-9904-9

    Article  Google Scholar 

  16. Caughey, T.: Classical normal modes in damped linear dynamic systems. J. Appl. Mech. 27(2), 269–271 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wilson, E., Penzien, J.: Evaluation of orthogonal damping matrices. Int. J. Numer. Methods Eng. 4(1), 5–10 (1972)

    Article  Google Scholar 

  18. Ni, Y., Zhang, Z., MacRae, G., Carr, A., Yeow, T.: Development of practical method for incorporation of elemental damping in inelastic dynamic time history analysis. In: Proceedings of the 2019 Pacific Conference on Earthquake Engineering and Annual NZSEE Conference, p. 4C.11. Auckland, 4–6 April (2019)

    Google Scholar 

  19. Lee, C.L.: A novel damping model for earthquake induced structural response simulation, in Proceedings of the 2019 Pacific Conference on Earthquake Engineering and Annual NZSEE Conference, p. 4C.07. Auckland, 4–6 April (2019)

    Google Scholar 

  20. Lee, C.L.: Efficient proportional damping model for simulating seismic response of large-scale structures. In: Papadrakakis, M., Fragiadakis, M. (eds.) COMPDYN 2019 Proceedings, vol. 3, pp. 4557–4564 (2019). https://doi.org/10.7712/120119.7249.18776

  21. Lee, C.L.: Sparse proportional viscous damping model for structures with large number of degrees of freedom. J. Sound Vib. 478, 115312 (2020). https://doi.org/10.1016/j.jsv.2020.115312

    Article  Google Scholar 

  22. Lee, C.L.: Proportional viscous damping model for matching frequency-dependent damping ratio. In: 17th World Conference in Earthquake Engineering, pp. 2k–0043. Sendai (2020)

    Google Scholar 

  23. Lee, C.L.: Bell-shaped proportional viscous damping models with adjustable frequency bandwidth. Comput. Struct. 244, 106423 (2021). https://doi.org/10.1016/j.compstruc.2020.106423

    Article  Google Scholar 

  24. Lee, C.L., Chang, T.L.: Numerical evaluation of bell-shaped proportional damping model for softening structures. In: WCCM-APCOM2022. Yokohama (2022). https://doi.org/10.23967/wccm-apcom.2022.083, https://www.scipedia.com/public/Lee_Chang_2022a

  25. Lee, C.L., Chang, T.L.: Implementation and Performance of Bell-Shaped Damping Model. In: Di Trapani, F., Demartino, C., Marano, G.C., Monti, G. (eds.) Proceedings of the 2022 Eurasian OpenSees Days. EOS 2022. Lecture Notes in Civil Engineering, vol. 326. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30125-4_13

    Google Scholar 

  26. Giberson, M.F.: The response of nonlinear multi-story structures subjected to earthquake excitation. Ph.D. thesis, Engineering and Applied Science, California Institute of technology (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Long Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, CL. (2024). New Elemental Damping Model for Nonlinear Dynamic Response. In: Lacarbonara, W. (eds) Advances in Nonlinear Dynamics, Volume I. ICNDA 2023. NODYCON Conference Proceedings Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50631-4_33

Download citation

Publish with us

Policies and ethics