Skip to main content

On Abstract Spectral Constants

  • Conference paper
  • First Online:
Operator and Matrix Theory, Function Spaces, and Applications (IWOTA 2022)

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 295))

Included in the following conference series:

  • 51 Accesses

Abstract

We prove bounds for a class of homomorphisms arising in the study of spectral sets, by involving extremal functions and vectors. These are used to recover three celebrated results on spectral constants by Crouzeix–Palencia, Okubo–Ando and von Neumann in a unified way and to refine a recent result by Crouzeix–Greenbaum.

The second named author has been supported by the Dutch Research Council (NWO) grant OCENW.M20.292.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the literature a \(\kappa \)-spectral set is typically instead defined by requiring that (1) holds for all rational functions p with poles off \(W^{-}\) and such that the spectrum of M is contained in \(W^{-}\). For the applications we have in mind, considering polynomials is however sufficient.

  2. 2.

    This mapping, however, fails to be multiplicative in general.

References

  1. C. Badea, M. Crouzeix, H. Klaja, Spectral Sets and Operator Radii. Bull. Lond. Math. Soc. 50(6), 986–996 (2018)

    Article  MathSciNet  Google Scholar 

  2. K. Bickel, P. Gorkin, A. Greenbaum, T. Ransford, F.L. Schwenninger, E. Wegert, Crouzeix’s Conjecture and Related Problems. Comput. Methods Funct. Theory 20(3), 701–728 (2020)

    Article  MathSciNet  Google Scholar 

  3. C.A. Berger, J.G. Stampfli, Mapping Theorems for the Numerical Range. Am. J. Math. 89(4), 1047–1055 (1967)

    Article  MathSciNet  Google Scholar 

  4. M. Crouzeix, A. Greenbaum, Spectral sets: numerical range and beyond. SIAM J. Matrix Anal. Appl. 40(3), 1087–1101 (2019)

    Article  MathSciNet  Google Scholar 

  5. T. Caldwell, A. Greenbaum, K. Li, Some extensions of the crouzeix–palencia result. SIAM J. Matrix Anal. Appl. 39(2), 769–780 (2018)

    Article  MathSciNet  Google Scholar 

  6. R. Clouâtre, M. Ostermann, T. Ransford, An abstract approach to the crouzeix conjecture. J. Oper. Theory 90(1), 209–221 (2023)

    MathSciNet  Google Scholar 

  7. M. Crouzeix, Bounds for analytical functions of matrices. Integr. Equ. Oper. Theory 48(4), 461–477 (2004)

    Article  MathSciNet  Google Scholar 

  8. M. Crouzeix, Numerical range and functional calculus in hilbert space. J. Funct. Anal. 244(2), 668–690 (2007)

    Article  MathSciNet  Google Scholar 

  9. M. Crouzeix, C. Palencia, The numerical range is a \((1+\sqrt {2})\)-spectral set. SIAM J. Matrix Anal. Appl. 38(2), 649–655 (2017)

    Google Scholar 

  10. B. Delyon, F. Delyon, Generalization of von Neumann’s spectral sets and integral representation of operators. Bull. Soc. Math. Fr. 127(1), 25–41 (1999)

    Article  MathSciNet  Google Scholar 

  11. K. Davidson, V. Paulsen, H. Woerdeman, Complete spectral sets and numerical range. Proc. Am. Math. Soc. 146(3), 1189–1195 (2018)

    Article  MathSciNet  Google Scholar 

  12. S.W. Drury, Symbolic calculus of operators with unit numerical radius. Linear Algebra Appl. 428(8–9), 2061–2069 (2008)

    Article  MathSciNet  Google Scholar 

  13. N. Dunford, J.T. Schwartz, Linear Operators. I. General Theory. Pure and Applied Mathematics, vol. 7 (Interscience Publishers, Inc./Interscience Publishers Ltd., New York/London, 1958). With the assistance of W. G. Bade and R. G. Bartle

    Google Scholar 

  14. T.W. Gamelin, J. Garnett, Pointwise bounded approximation and dirichlet algebras. J. Funct. Anal. 8(3), 360–404 (1971)

    Article  MathSciNet  Google Scholar 

  15. M. Haase, Lectures on functional calculus, in 21st International Internet Seminar (Kiel University, 2018). www.math.uni-kiel.de/isem21/en/course/phase1/

  16. M. Hartz, M. Lupini, Dilation theory in finite dimensions and matrix convexity. Isr. J. Math. 245(1), 39–73 (2021)

    Article  MathSciNet  Google Scholar 

  17. M.T. Jury, G. Tsikalas, Positivity conditions on the annulus via the double-layer potential Kernel (2023). Available at arXiv: 2307.13387v2

    Google Scholar 

  18. H. Klaja, J. Mashreghi, T. Ransford, On mapping theorems for numerical range. Proc. Am. Math. Soc. 144(7), 3009–3018 (2016)

    Article  MathSciNet  Google Scholar 

  19. J. Milnor, D.W. Weaver, Topology from the Differentiable Viewpoint, vol. 21 (Princeton University Press, Princeton, 1997)

    Google Scholar 

  20. J. von Neumann, Eine Spektraltheorie für Allgemeine Operatoren eines Unitären Raumes. Math. Nach. 4(1–6), 258–281 (1950)

    Article  Google Scholar 

  21. K. Okubo, T. Ando, Constants related to operators of class \({C}_{\rho }\). Manuscripta Math. 16(4), 385–394 (1975)

    Google Scholar 

  22. V. Paulsen, Completely Bounded Maps and Operator Algebras, vol. 78 (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  23. P. Pagacz, P. Pietrzycki, M. Wojtylak, Between the von Neumann inequality and the crouzeix conjecture. Linear Algebra Appl. 605, 130–157 (2020)

    Article  MathSciNet  Google Scholar 

  24. M. Putinar, S. Sandberg, A skew normal dilation on the numerical range of an operator. Mathematische Ann. 331(2), 345–357 (2005)

    Article  MathSciNet  Google Scholar 

  25. R. Remmert, Theory of Complex Functions, vol. 122 (Springer Science & Business Media, New York, 1991)

    Google Scholar 

  26. T. Ransford, F.L. Schwenninger, Remarks on the Crouzeix–Palencia proof that the numerical range is a \((1+\sqrt {2})\)-spectral set. SIAM J. Matrix Anal. Appl. 39(1), 342–345 (2018)

    Google Scholar 

  27. T. Ransford, N. Walsh, Spectral sets, extremal functions and exceptional matrices. Linear Multilinear Algebra 70(17), 3310–3318 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Georgios Tsikalas (Washington University, St. Louis) for the enriching communication. We are also grateful for the careful reading of the anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schwenninger, F.L., de Vries, J. (2024). On Abstract Spectral Constants. In: Ptak, M., Woerdeman, H.J., Wojtylak, M. (eds) Operator and Matrix Theory, Function Spaces, and Applications. IWOTA 2022. Operator Theory: Advances and Applications, vol 295. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-50613-0_15

Download citation

Publish with us

Policies and ethics