Skip to main content

Hawkes Processes in Energy Markets: Modelling, Estimation and Derivatives Pricing

  • Chapter
  • First Online:
Quantitative Energy Finance

Abstract

The purpose of the present contribution is to illustrate the extensive use of Hawkes processes in modeling price dynamics in energy markets and to show how they can be applied for derivatives pricing. After a review of the literature devoted to the subject and on the exact simulation of Hawkes processes, we introduce a simple, yet useful, Hawkes-based model for energy spot prices. We present the model under the historical measure and illustrate a structure preserving change of measure, allowing to specify a risk-neutral dynamics. Then, we propose an effective estimation methodology based on particle filtering. Finally, we show how to perform exotic derivatives pricing both through exact simulation and characteristic function inversion techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In other words, we exclude from our review those methods which are expectantly slow since based on repeated implementation of computationally intensive numerical techniques such as, for example, root finding algorithms (as in [64]), or numerical integration (as in [59]).

  2. 2.

    A partial solution to this problem is given by increasing the value of the parameter \(\bar {k}\) in Algorithm 3, which controls the function L.

  3. 3.

    See e.g. [52] and the references therein for more details on the design of this experiment and definition of RMSE.

  4. 4.

    We performed several experiments and we found that, for the log–likelihood computation in step 1, \(N=100\) and \(M=10^4\) are enough to fully represent the spectrum of reasonable starting points. A higher number of particles N is only needed to control the Monte Carlo variance of the likelihood estimator, but not to increase its level. Therefore, we increase N only for the subsequent optimization in order to stabilize the inferential procedure.

References

  1. Ait-Sahalia, Y., Hurd, T.: Portfolio choice in markets with contagion. J. Financial Econ. 14, 1–28 (2016)

    Google Scholar 

  2. Ait-Sahalia, Y., Chaco-Diaz, J., Laeven, R.J.A.: Modeling financial contagion using mutually exciting jump processes. J. Financial Econ. 117, 585–606 (2015)

    Article  Google Scholar 

  3. Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo. J. R. Stat. Soc. Ser. B 72, 269–342 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bacry, E., Delattre, S., Hoffman, M., Muzy, J.: Modelling microstructure noise by mutually exciting point processes. Quantitat. Finance, 13, 65–77 (2013)

    Article  Google Scholar 

  5. Bacry, E., Mastromatteo, I., Muzy, J.: Hawkes processes in finance. Mark. Microstruct. Liquid., 1, 1550005 (2015)

    Article  Google Scholar 

  6. Bernis, G., Brignone, R., Scotti, S., Sgarra, C.: A Gamma Ornstein-Uhlenbeck model driven by a Hawkes process. Math. Financial Econ. 15, 747–773 (2021)

    Article  MathSciNet  Google Scholar 

  7. Blasberg, A., Graf von Luckner, N., Kiesel, R.: Modeling the serial structure of the Hawkes process parameters for market order arrivals on the German intraday power market. In: IEEE Proceedings, 16th International Conference on the European Energy Market (EEM), Ljubljana, Slovenia, 2019, pp. 1–6 (2019)

    Google Scholar 

  8. Boswijk, P., Laeven, R.A., Lalu, A.: Asset returns with self-exciting jumps: Option pricing and estimation with a continuum of moments. In: Working Paper (2016)

    Google Scholar 

  9. Brachetta, M., Callegaro, G., Ceci, C., Sgarra, C.: Optimal reinsurance via BSDEs in a partially observable model with jump clusters. Finance Stoch., Forthcoming, 1–42 (2024). https://doi.org/10.1007/s00780-023-00523-z

  10. Brignone, R., Sgarra, C.: Asian options pricing in Hawkes-type jump-diffusion models. Ann. Finance 16, 101–119 (2020)

    Article  MathSciNet  Google Scholar 

  11. Brignone, R., Gonzato, L., Lütkebohmert, E.: Efficient quasi-Bayesian estimation of affine option pricing models using risk-neutral cumulants. J. Bank. Finance 148, 106745 (2023)

    Article  Google Scholar 

  12. Brignone, R., Gonzato, L., Sgarra, C.: Commodity Asian option pricing and simulation in a 4-factor model with jump clusters. Ann. Oper. Res., Forthcoming, 1–32 (2024). https://doi.org/10.1007/s10479-022-05152-x

  13. Callegaro, G., Gaïgi, M., Scotti, S., Sgarra, C.: Optimal investment in markets with over and under-reaction to information. Math. Financial Econ. 11, 299–322 (2017)

    Article  MathSciNet  Google Scholar 

  14. Callegaro, G., Mazzoran, A., Sgarra, C.: A self-exciting framework for forward dynamics in power markets. Appl. Stoch. Models Bus. Ind. 38, 27–48 (2022)

    Article  MathSciNet  Google Scholar 

  15. Cartea, Á., Jaimungal, S., Ricci, J.: Buy low, sell high: A high frequency trading perspective. SIAM J. Financial Math. 5, 415–444 (2014)

    Article  MathSciNet  Google Scholar 

  16. Chavez-Demoulin, V., McGill, J.: High-frequency financial data modeling using Hawkes processes. J. Bank. Finance 36, 3415–3426 (2012)

    Article  Google Scholar 

  17. Chavez-Demoulin, V., Davison, A., McNeil, A.: Estimating value-at-risk: a point process approach. Quantitat. Finance 5, 227–234 (2005)

    Article  MathSciNet  Google Scholar 

  18. Clements, A., Herrera, R., Hurn, A.: Modelling interregional links in electricity price spikes. Energy Econ. 51, 383–393 (2015)

    Article  Google Scholar 

  19. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods. Springer (2002)

    Google Scholar 

  20. Dassios, A., Zhao, H.: Ruin by dynamic contagion claims. Insur. Math. Econ. 51, 93–106 (2012)

    Article  MathSciNet  Google Scholar 

  21. Dassios, A., Zhao, H.: Exact simulation of Hawkes process with exponentially decaying intensity. Electron. Commun. Probab. 18, 1–13 (2013)

    Article  MathSciNet  Google Scholar 

  22. Duffie, D., Glynn, P.: Efficient Monte Carlo estimation of security prices. Ann. Appl. Probab. 4, 897–9058 (1995)

    Google Scholar 

  23. El Euch, O., Rosenbaum, M.: The characteristic function of rough Heston models. Math. Finance 29, 3–38 (2019)

    Article  MathSciNet  Google Scholar 

  24. Errais, E., Giesecke, K., Goldberg, L.: Affine point processes and portfolio credit risk. SIAM J. Financ. Math. 1, 642–665 (2010)

    Article  MathSciNet  Google Scholar 

  25. Eyjolfsson, H., Tjøstheim, D.: Self-exciting jump processes with applications to energy markets. Ann. Inst. Stat. Math. 70, 373–393 (2018)

    Article  MathSciNet  Google Scholar 

  26. Fang, F., Oosterlee, C.: A novel pricing method for European options based on Fourier-cosine series expansions. SIAM J. Sci. Comput. 31, 826–848 (2008)

    Article  MathSciNet  Google Scholar 

  27. Favetto, B.: The European intraday electricity market: a modeling based on the Hawkes process. J. Energy Mark. 13, 57–96 (2008)

    Google Scholar 

  28. Feunou, B., Okou, C.: Risk-neutral moment-based estimation of affine option pricing models. J. Appl. Econ. 33, 1007–1025 (2018)

    Article  MathSciNet  Google Scholar 

  29. Filimonov, V., Bicchetti, D., Maystre, N., Sornette, D.: Quantification of the high level of endogeneity and of structural regime shifts in commodity markets. J. Int. Money Finance 42, 174–192 (2014)

    Article  Google Scholar 

  30. Fox, E., Short, M.B., Schoenberg, F.P., Coronges, K.D., Bertozzi, A.L.: (2016) Modeling E-mail networks and inferring leadership using self-exciting point processes. J. Am. Stat. Assoc. 111, 564–584 (2014)

    Google Scholar 

  31. Fulop, A., Li, J.: Bayesian estimation of dynamic asset pricing models with informative observations. J. Econ. 209, 114–138 (2019)

    Article  MathSciNet  Google Scholar 

  32. Fulop, A., Li, J., Yu, J.: Self-exciting jumps, learning, and asset pricing implications. Rev. Financial Stud. 28, 876–912 (2015)

    Article  Google Scholar 

  33. Fusai, G., Kyriakou, I.: General optimized lower and upper bounds for discrete and continuous arithmetic Asian options. Math. Oper. Res. 41, 531–559 (2016)

    Article  MathSciNet  Google Scholar 

  34. Giordano, L., Morale, D.: A fractional Brownian-Hawkes model for the Italian electricity spot market: estimation and forecasting. J. Energy Mark. 14, 65–109 (2021)

    Google Scholar 

  35. Gonzato, L., Sgarra, C.: Self-exciting jumps in the oil market: Bayesian estimation and dynamic hedging. Energy Econ. 99, 105279 (2021)

    Article  Google Scholar 

  36. Graf von Luckner, N., Kiesel, R.: Modeling market order arrivals on the German intraday electricity market with the Hawkes process. J. Risk Financ. Manag. 14, 1–31 (2021)

    Google Scholar 

  37. Hainaut, D.: Impact of volatility clustering on equity indexed annuities. Insur. Math. Econ. 71, 367–381 (2016)

    Article  MathSciNet  Google Scholar 

  38. Hainaut, D.: Contagion modeling between the financial and insurance markets with time changed processes. Insur. Math. Econ. 74, 63–77 (2017)

    Article  MathSciNet  Google Scholar 

  39. Hainaut, D., Moraux, F.: Hedging of options in the presence of jump clustering. J. Comput. Finance 22, 1–35 (2018)

    Google Scholar 

  40. Hawkes, A.G.: Point spectra of some mutually exciting point processes. J. R. Stat. Soc. Ser. B (Methodol.) 33, 438–443 (1971)

    Google Scholar 

  41. Hawkes, A.G.: Spectra of some self-exciting and mutually exciting point processes. Biometrika 58, 83–90 (1971)

    Article  MathSciNet  Google Scholar 

  42. Hawkes, A.G.: Hawkes processes and their applications to finance: a review. Quantiat. Finance 18, 193–198 (2018)

    Article  MathSciNet  Google Scholar 

  43. Hawkes, A.G.: Hawkes jump-diffusions and finance: a brief history and review. Eur. J. Finance 28, 627–641 (2022)

    Article  Google Scholar 

  44. Jaisson, T., Rosenbaum, M.: Limit theorems for nearly unstable Hawkes processes. Ann. Appl. Probab. 25, 600–631 (2015)

    Article  MathSciNet  Google Scholar 

  45. Jang, J., Dassios, A.: A bivariate shot noise self-exciting process for insurance. Insur. Math. Econ. 53, 524–532 (2013)

    Article  MathSciNet  Google Scholar 

  46. Jiao, Y., Ma, C., Scotti, S.: Alpha-CIR model in sovereign interest rate modelling. Finance Stoch. 21, 789–813 (2017)

    Article  MathSciNet  Google Scholar 

  47. Jiao, Y., Ma, C., Scotti, S., Sgarra, C.: A branching process approach to power markets. Energy Econ. 79, 144–156 (2019)

    Article  Google Scholar 

  48. Johnson, D.H.: Point process models of single-neuron discharges. J. Comput. Neurosci. 3, 275–299 (1996)

    Article  Google Scholar 

  49. Kaminski, V.: Managing Energy Price Risk. Risk Books, London (1999)

    Google Scholar 

  50. Ketelbuters, J., Hainaut, D.: CDS pricing with fractional Hawkes processes. Eur. J. Oper. Res. 297, 1139–1150 (2022)

    Article  MathSciNet  Google Scholar 

  51. Kokholm, T.: Pricing and hedging of derivatives in contagious markets. J. Bank. Finance 66, 19–34 (2016)

    Article  Google Scholar 

  52. Kyriakou, I., Brignone, R., Fusai, G.: Unified moment–based modelling of integrated stochastic processes. Oper. Res., Fothcoming, 1–24 (2024). https://doi.org/10.1287/opre.2022.2422

  53. Lewis, P.A., Shedler, G.S.: Simulation of nonhonmogeneous Poisson processes by thinning. Naval Res. Logist. Q. 26, 403–413 (1969)

    Article  Google Scholar 

  54. Longstaff, F., Schwartz, E.: Valuing American options by simulation: a simple least-squares approach. Rev. Financial Stud. 14, 113–147 (2001)

    Article  Google Scholar 

  55. Malik, S., Pitt, M.K.: Particle filters for continous likelihood evaluation and maximisation. J. Econ. 165, 190–209 (2011)

    Article  Google Scholar 

  56. Merton, R.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)

    Article  Google Scholar 

  57. Meyer, S., Held, L.: Power-law models for infectious disease spread. Ann. Appl. Stat. 8, 1612–1639 (2014)

    Article  MathSciNet  Google Scholar 

  58. Mohler, G., Short, M.B., Brantigham, P.J., Schoenberg, F.P., Tita, G.E.: Self-exciting point process modeling of crime. J. Am. Stat. Assoc. 106, 100–108 (2011)

    Article  MathSciNet  Google Scholar 

  59. Møller, J., Rasmussen, J.G.: Perfect simulation of Hawkes processes. Adv. Appl. Probab. 37, 629–646 (2005)

    Article  MathSciNet  Google Scholar 

  60. Morariu-Patrichi, Y., Pakkanen, M.: Hybrid marked point processes: Characterization, existence and uniqueness. Mark. Microstruct. Liquid. 4, 1950007 (2018)

    Article  Google Scholar 

  61. Nakagawa, T., Subbey, S., Solvang, H.K.: Integrating Hawkes process and bio mass models to capture impulsive population dynamics. Dyn. Contin. Discrete Impulsive Syst. Ser. B Appl. Algorithms 26, 153–170 (2019)

    MathSciNet  Google Scholar 

  62. Ogata, Y.: On Lewis simulation method for point processes. IEEE Trans. Inf. Theory 27, 23–31 (1981)

    Article  Google Scholar 

  63. Ogata, Y.: Space-time point-process models for earthquake occurrences. Ann. Inst. Stat. Math. 50, 379–402 (1998)

    Article  Google Scholar 

  64. Ozaki, T.: Maximum likelihood estimation of Hawkes self-exciting point processes. Ann. Inst. Stat. Math. 31, 145–155 (1979)

    Article  MathSciNet  Google Scholar 

  65. Pardoux, E.: Probabilistic Models of Population Evolution. Springer (2016)

    Google Scholar 

  66. Porter, M.D., White, G.: Self-exciting hurdle models for terrorist activity. Ann. Appl. Stat. 6, 106–124 (2012)

    Article  MathSciNet  Google Scholar 

  67. Shiraya, K., Takahashi, A.: Pricing average options on commodities. J. Futures Mark. 31, 407–439 (2011)

    Article  Google Scholar 

  68. Sokol, A., Hansen, N.: Exponential martingales and changes of measure for counting processes. Stoch. Anal. Appl. 33, 823–843 (2015)

    Article  MathSciNet  Google Scholar 

  69. Stabile, G., Torrisi, G.: Risk processes with non-stationary Hawkes claims arrivals. Methodol. Comput. Appl. Probab. 12, 415–429 (2010)

    Article  MathSciNet  Google Scholar 

  70. Vinogradov, A., Agletdinov, E., Merson, D.: Mechanical twinning is a correlated dynamic process. Sci. Rep. 9, 5748 (2019)

    Article  Google Scholar 

  71. Xu, L., Duan, J.A., Whinston, A.: Path to purchase: A mutually exciting point process model for online advertising and conversion. Manag. Sci. 60, 1392–1412 (2014)

    Article  Google Scholar 

  72. Zhang, X., Glynn, P., Giesecke, K., Blanchet, J.: Rare event simulation for a generalized Hawkes process. In: IEEE Proceedings of the 2009 Winter Simulation Conference, pp. 1291–1298 (2009)

    Google Scholar 

  73. Zhu, L.: Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims. Insur. Math. Econ. 53, 544–550 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to an anonymous referee, who read very carefully a previous version of this chapter and provided significant suggestions, helpful in substantially improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Sgarra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brignone, R., Gonzato, L., Sgarra, C. (2024). Hawkes Processes in Energy Markets: Modelling, Estimation and Derivatives Pricing. In: Benth, F.E., Veraart, A.E.D. (eds) Quantitative Energy Finance. Springer, Cham. https://doi.org/10.1007/978-3-031-50597-3_2

Download citation

Publish with us

Policies and ethics