Skip to main content

Estimation of the Number of Factors in a Multi-Factorial Heath-Jarrow-Morton Model in Power Markets

  • Chapter
  • First Online:
Quantitative Energy Finance
  • 137 Accesses

Abstract

We study the calibration of specific multi-factorial Heath-Jarrow-Morton models to power market prices, with a focus on the estimation of the optimal number of Gaussian factors. We describe a common statistical procedure based on likelihood maximisation and Akaike/Bayesian information criteria, in the case of a joint calibration on both spot and futures prices. We perform a detailed analysis on three national markets within Europe: Belgium, France, and Germany. The results show a lot of similarities among all the markets we consider, especially on the optimal number of factors and on the behaviour of the different factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice the number of observed prices may vary, even after removing the redundant products (e.g. a quarterly contract when all the corresponding monthly contracts are observed), see Sect. 4.1.

References

  1. Benth, F.E., Koekebakker, S.: Stochastic modeling of financial electricity contracts. Energy Econ. 30(3), 1116–1157 (2008)

    Article  Google Scholar 

  2. Benth, F.E., Piccirilli, M., Vargiolu, T.: Mean-reverting additive energy forward curves in a Heath–Jarrow–Morton framework. Math. Financ. Econ. 13(4), 543–577 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bhar, R., Chiarella, C.: The estimation of the Heath-Jarrow-Morton model by use of Kalman filtering techniques. In: Computational Approaches to Economic Problems, pp. 113–126 (1997)

    Google Scholar 

  4. Bhar, R., Chiarella, C., To, T.D.: A maximum likelihood approach to estimation of Heath-Jarrow-Morton models. Research Paper Series 80, Quantitative Finance Research Centre, University of Technology, Sydney (2002)

    Google Scholar 

  5. Bjerksund, P., Rasmussen, H., Stensland, G.: Valuation and risk management in the Norwegian electricity market. In: Energy, Natural Ressources And Environmental Economics, pp. 167–185. Springer, Berlin (2000)

    Google Scholar 

  6. Burnham, K.P., Anderson, D.R.: Multimodel inference. Soc. Methods Res. 33(2), 261–304 (2004)

    Article  Google Scholar 

  7. Clewlow, L., Strickland, C.: Energy Derivatives: Pricing and Risk Management. Lacima Group, Sydney (2000)

    Google Scholar 

  8. Dahlgren, M.: A continuous time model to price commodity-based swing options. Rev. Deriv. Res. 8(1), 27–47 (2005)

    Article  MathSciNet  Google Scholar 

  9. Deschatre, T., Feron, O., Gruet, P.: A survey of electricity spot and futures price models for risk management applications. Energy Econ. 102, 105504 (2021)

    Article  Google Scholar 

  10. Diko, P., Lawford, S., Limpens, V.: Risk premia in electricity forward prices. Stud. Nonlinear Dynam. Econom. 10(3), 1–24 (2006)

    Google Scholar 

  11. Edoli, E., Tasinato, D., Vargiolu, T.: Calibration of a multifactor model for the forward markets of several commodities. Optimization 62(11), 1553–1574 (2013)

    Article  MathSciNet  Google Scholar 

  12. Fabbiani, E., Marziali, A., De Nicolao, G.: Fast calibration of two-factor models for energy option pricing. Appl. Stoch. Models Bus. Ind. 37(3), 661–671 (2021)

    Article  MathSciNet  Google Scholar 

  13. Feron, O., Daboussi, E.: Calibration of electricity price models. Fields Inst. Commun. 74, 183–210 (2015)

    Article  MathSciNet  Google Scholar 

  14. Feron, O., Gruet, P., Hoffmann, M.: Efficient volatility estimation in a two-factor model. Scand. J. Stat. 47(3), 862–898 (2020)

    Article  MathSciNet  Google Scholar 

  15. Gibson, R., Schwartz, E.S.: Stochastic convenience yield and the pricing of oil contingent claims. J. Financ. 45(3), 959–976 (1990)

    Article  Google Scholar 

  16. Gonzalez, J., Moriarty, J., Palczewski, J.: Bayesian calibration and number of jump components in electricity spot price models. Energy Econ. 65, 375–388 (2017)

    Article  Google Scholar 

  17. Gruet, P.: Some problems of statistics and optimal control for stochastic processes in the field of electricity markets prices modeling. Ph.D. Thesis, Université Paris Diderot (2015)

    Google Scholar 

  18. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica. 60(1), 77–105 (1992)

    Article  Google Scholar 

  19. Heitmann, F., Trautmann, S.: Gaussian multi-factor interest rate models: theory, estimation and implications for option pricing. Lehrstuhl f. Finanzwirtschaft, University of Mainz (1995)

    Google Scholar 

  20. Jeffrey, A., Kristensen, D., Linton, O., Nguyen, T., Phillips, P.C.B.: Nonparametric estimation of a multifactor Heath-Jarrow-Morton model: an integrated approach. J. Financ. Econom. 2(2), 251–289 (2004)

    Google Scholar 

  21. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  22. Karesen, K.F., Husby, E.: A joint state-space model for electricity spot and futures prices. Norsk Regnesentral (2000)

    Google Scholar 

  23. Kemna, A.G.Z., Vorst, A.C.F.: A pricing method for options based on average asset values. J. Bank. Financ. 14(1), 113–129 (1990)

    Article  Google Scholar 

  24. Kiesel, R., Schindlmayr, G., Börger, R.H.: A two-factor model for the electricity forward market. Quant. Financ. 9(3), 279–287 (2009)

    Article  MathSciNet  Google Scholar 

  25. Koekebakker, S., Ollmar, F.: Forward curve dynamics in the Nordic electricity market. Manag. Financ. 31(6), 73–94 (2005)

    Google Scholar 

  26. Latini, L., Piccirilli, M., Vargiolu, T.: Mean-reverting no-arbitrage additive models for forward curves in energy markets. Energy Econ. 79, 157–170 (2019)

    Article  Google Scholar 

  27. Lucia, J.J., Schwartz, E.S.: Electricity prices and power derivatives: evidence from the Nordic power exchange. Rev. Deriv. Res. 5(1), 5–50 (2002)

    Article  Google Scholar 

  28. Manoliu, M., Tompaidis, S.: Energy futures prices: term structure models with Kalman filter estimation. Appl. Math. Financ. 9(1), 21–43 (2002)

    Article  Google Scholar 

  29. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  30. Schwartz, E.S.: The stochastic behavior of commodity prices: implications for valuation and hedging. J. Financ. 52(3), 923–973 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Gruet .

Editor information

Editors and Affiliations

Appendix: Estimation Results

Appendix: Estimation Results

See Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, and 28.

1.1 Belgian Power Market Data

N

Estimated correlation matrix

7

\( \begin {bmatrix} 1.00 & 0.02 & -0.02 & 0.04 & -0.06 & 0.09 & -0.11 \\ 0.02 & 1.00 & -1.00 & 0.95 & -0.91 & 0.82 & -0.73 \\ -0.02 & -1.00 & 1.00 & -0.98 & 0.94 & -0.86 & 0.76 \\ 0.04 & 0.95 & -0.98 & 1.00 & -0.99 & 0.93 & -0.84 \\ -0.06 & -0.91 & 0.94 & -0.99 & 1.00 & -0.97 & 0.89 \\ 0.09 & 0.82 & -0.86 & 0.93 & -0.97 & 1.00 & -0.98 \\ -0.11 & -0.73 & 0.76 & -0.84 & 0.89 & -0.98 & 1.00 \end {bmatrix}\)

8

\( \begin {bmatrix} 1.00 & 0.03 & -0.04 & 0.07 & -0.10 & 0.12 & -0.11 & 0.09 \\ 0.03 & 1.00 & -0.99 & 0.95 & -0.84 & 0.65 & -0.43 & 0.29 \\ -0.04 & -0.99 & 1.00 & -0.98 & 0.89 & -0.70 & 0.48 & -0.34 \\ 0.07 & 0.95 & -0.98 & 1.00 & -0.96 & 0.82 & -0.62 & 0.47 \\ -0.10 & -0.84 & 0.89 & -0.96 & 1.00 & -0.94 & 0.79 & -0.66 \\ 0.12 & 0.65 & -0.70 & 0.82 & -0.94 & 1.00 & -0.95 & 0.86 \\ -0.11 & -0.43 & 0.48 & -0.62 & 0.79 & -0.95 & 1.00 & -0.97 \\ 0.09 & 0.29 & -0.34 & 0.47 & -0.66 & 0.86 & -0.97 & 1.00 \end {bmatrix}\)

Table 9 Estimated correlation matrices in the French Power Market, period 2020. N is the number of factors

N

Estimated correlation matrix

6

\( \begin {bmatrix} 1.00 & 0.15 & -0.14 & 0.14 & -0.14 & 0.14 \\ 0.15 & 1.00 & -0.69 & 0.63 & -0.50 & 0.43 \\ -0.14 & -0.69 & 1.00 & -0.99 & 0.95 & -0.90 \\ 0.14 & 0.63 & -0.99 & 1.00 & -0.98 & 0.95 \\ -0.14 & -0.50 & 0.95 & -0.98 & 1.00 & -0.99 \\ 0.14 & 0.43 & -0.90 & 0.95 & -0.99 & 1.00 \end {bmatrix}\)

7

\( \begin {bmatrix} 1.00 & 0.26 & -0.10 & 0.09 & -0.06 & 0.03 & -0.00 \\ 0.26 & 1.00 & -0.61 & 0.58 & -0.50 & 0.39 & -0.31 \\ -0.10 & -0.61 & 1.00 & -1.00 & 0.97 & -0.89 & 0.81 \\ 0.09 & 0.58 & -1.00 & 1.00 & -0.98 & 0.92 & -0.85 \\ -0.06 & -0.50 & 0.97 & -0.98 & 1.00 & -0.98 & 0.93 \\ 0.03 & 0.39 & -0.89 & 0.92 & -0.98 & 1.00 & -0.98 \\ -0.00 & -0.31 & 0.81 & -0.85 & 0.93 & -0.98 & 1.00 \end {bmatrix}\)

8

\( \begin {bmatrix} 1.00 & 0.23 & -0.06 & 0.06 & -0.05 & 0.07 & -0.13 & 0.16 \\ 0.23 & 1.00 & -0.58 & 0.54 & -0.44 & 0.32 & -0.24 & 0.21 \\ -0.06 & -0.58 & 1.00 & -1.00 & 0.95 & -0.83 & 0.62 & -0.49 \\ 0.06 & 0.54 & -1.00 & 1.00 & -0.98 & 0.87 & -0.67 & 0.54 \\ -0.05 & -0.44 & 0.95 & -0.98 & 1.00 & -0.95 & 0.78 & -0.65 \\ 0.07 & 0.32 & -0.83 & 0.87 & -0.95 & 1.00 & -0.93 & 0.83 \\ -0.13 & -0.24 & 0.62 & -0.67 & 0.78 & -0.93 & 1.00 & -0.98 \\ 0.16 & 0.21 & -0.49 & 0.54 & -0.65 & 0.83 & -0.98 & 1.00 \end {bmatrix}\)

Table 10 Estimated correlation matrices in the Belgian Power Market, period 2021–2022. N is the number of factors

N

Estimated correlation matrix

6

\( \begin {bmatrix} 1.00 & -1.00 & 0.09 & -0.09 & 0.08 & -0.08 \\ -1.00 & 1.00 & -0.10 & 0.10 & -0.09 & 0.08 \\ 0.09 & -0.10 & 1.00 & -1.00 & 0.98 & -0.86 \\ -0.09 & 0.10 & -1.00 & 1.00 & -0.99 & 0.89 \\ 0.08 & -0.09 & 0.98 & -0.99 & 1.00 & -0.92 \\ -0.08 & 0.08 & -0.86 & 0.89 & -0.92 & 1.00 \end {bmatrix}\)

7

\( \begin {bmatrix} 1.00 & -0.99 & 0.03 & -0.02 & 0.00 & 0.29 & -0.33 \\ -0.99 & 1.00 & -0.05 & 0.04 & -0.02 & -0.27 & 0.30 \\ 0.03 & -0.05 & 1.00 & -1.00 & 0.99 & -0.33 & 0.19 \\ -0.02 & 0.04 & -1.00 & 1.00 & -1.00 & 0.34 & -0.20 \\ 0.00 & -0.02 & 0.99 & -1.00 & 1.00 & -0.36 & 0.22 \\ 0.29 & -0.27 & -0.33 & 0.34 & -0.36 & 1.00 & -0.99 \\ -0.33 & 0.30 & 0.19 & -0.20 & 0.22 & -0.99 & 1.00 \end {bmatrix}\)

8

\( \begin {bmatrix} 1.00 & -0.99 & 0.08 & -0.07 & 0.06 & -0.01 & 0.01 & -0.01 \\ -0.99 & 1.00 & -0.10 & 0.09 & -0.08 & 0.01 & -0.01 & 0.00 \\ 0.08 & -0.10 & 1.00 & -1.00 & 0.99 & -0.66 & 0.56 & -0.45 \\ -0.07 & 0.09 & -1.00 & 1.00 & -1.00 & 0.69 & -0.59 & 0.48 \\ 0.06 & -0.08 & 0.99 & -1.00 & 1.00 & -0.72 & 0.62 & -0.50 \\ -0.01 & 0.01 & -0.66 & 0.69 & -0.72 & 1.00 & -0.96 & 0.87 \\ 0.01 & -0.01 & 0.56 & -0.59 & 0.62 & -0.96 & 1.00 & -0.97 \\ -0.01 & 0.00 & -0.45 & 0.48 & -0.50 & 0.87 & -0.97 & 1.00 \end {bmatrix}\)

Table 11 Estimated \(\alpha _i\)’s (yr\({ }^{-1}\)) in the French Power Market, period 2018–2019. N is the number of factors
Table 12 Estimated \(\alpha _i\)’s (yr\({ }^{-1}\)) in the French Power Market, period 2020. N is the number of factors
Table 13 Estimated \(\alpha _i\)’s (yr\({ }^{-1}\)) in the French Power Market, period 2021–2022. N is the number of factors
Table 14 Estimated \(\sigma _i\)’s (yr\({ }^{-1/2}\)) in the French Power Market, period 2018–2019. N is the number of factors
Table 15 Estimated \(\sigma _i\)’s (yr\({ }^{-1/2}\)) in the French Power Market, period 2020. N is the number of factors
Table 16 Estimated \(\sigma _i\)’s (yr\({ }^{-1/2}\)) in the French Power Market, period 2021–2022. N is the number of factors
Table 17 Estimated correlation matrices in the French Power Market, period 2018–2019. N is the number of factors
Table 18 Estimated correlation matrices in the French Power Market, period 2020. N is the number of factors
Table 19 Estimated correlation matrices in the French Power Market, period 2021–2022. N is the number of factors
Table 20 Estimated \(\alpha _i\)’s (yr\({ }^{-1}\)) in the German Power Market, period 2018-2019. N is the number of factors
Table 21 Estimated \(\alpha _i\)’s (yr\({ }^{-1}\)) in the German Power Market, period 2020. N is the number of factors
Table 22 Estimated \(\alpha _i\)’s (yr\({ }^{-1}\)) in the German Power Market, period 2021–2022. N is the number of factors
Table 23 Estimated \(\sigma _i\)’s (yr\({ }^{-1/2}\)) in the German Power Market, period 2018-2019. N is the number of factors
Table 24 Estimated \(\sigma _i\)’s (yr\({ }^{-1/2}\)) in the German Power Market, period 2020. N is the number of factors
Table 25 Estimated \(\sigma _i\)’s (yr\({ }^{-1/2}\)) in the German Power Market, period 2021–2022. N is the number of factors
Table 26 Estimated correlation matrices in the German Power Market, period 2018–2019. N is the number of factors

N

Estimated correlation matrix

7

\( \begin {bmatrix} 1.00 & -0.04 & 0.03 & 0.01 & -0.05 & 0.08 & -0.09 \\ -0.04 & 1.00 & -1.00 & 0.98 & -0.94 & 0.84 & -0.74 \\ 0.03 & -1.00 & 1.00 & -0.98 & 0.95 & -0.85 & 0.75 \\ 0.01 & 0.98 & -0.98 & 1.00 & -0.99 & 0.91 & -0.81 \\ -0.05 & -0.94 & 0.95 & -0.99 & 1.00 & -0.97 & 0.89 \\ 0.08 & 0.84 & -0.85 & 0.91 & -0.97 & 1.00 & -0.98 \\ -0.09 & -0.74 & 0.75 & -0.81 & 0.89 & -0.98 & 1.00 \end {bmatrix}\)

8

\( \begin {bmatrix} 1.00 & 0.01 & -0.01 & 0.01 & 0.00 & -0.02 & 0.02 & -0.00 \\ 0.01 & 1.00 & -1.00 & 0.95 & -0.84 & 0.67 & -0.46 & 0.17 \\ -0.01 & -1.00 & 1.00 & -0.96 & 0.87 & -0.71 & 0.50 & -0.20 \\ 0.01 & 0.95 & -0.96 & 1.00 & -0.97 & 0.85 & -0.67 & 0.36 \\ 0.00 & -0.84 & 0.87 & -0.97 & 1.00 & -0.96 & 0.82 & -0.55 \\ -0.02 & 0.67 & -0.71 & 0.85 & -0.96 & 1.00 & -0.95 & 0.75 \\ 0.02 & -0.46 & 0.50 & -0.67 & 0.82 & -0.95 & 1.00 & -0.92 \\ -0.00 & 0.17 & -0.20 & 0.36 & -0.55 & 0.75 & -0.92 & 1.00 \end {bmatrix}\)

Table 27 Estimated correlation matrices in the German Power Market, period 2020. N is the number of factors

1.2 French Power Market Data

1.3 German Power Market Data

N

Estimated correlation matrix

7

\( \begin {bmatrix} 1.00 & 0.07 & -0.07 & 0.07 & -0.08 & 0.06 & -0.04 \\ 0.07 & 1.00 & -1.00 & 0.96 & -0.88 & 0.72 & -0.57 \\ -0.07 & -1.00 & 1.00 & -0.97 & 0.90 & -0.74 & 0.59 \\ 0.07 & 0.96 & -0.97 & 1.00 & -0.97 & 0.85 & -0.70 \\ -0.08 & -0.88 & 0.90 & -0.97 & 1.00 & -0.94 & 0.84 \\ 0.06 & 0.72 & -0.74 & 0.85 & -0.94 & 1.00 & -0.97 \\ -0.04 & -0.57 & 0.59 & -0.70 & 0.84 & -0.97 & 1.00 \end {bmatrix}\)

8

\( \begin {bmatrix} 1.00 & 0.11 & -0.11 & 0.10 & -0.09 & 0.05 & -0.01 & 0.01 \\ 0.11 & 1.00 & -1.00 & 0.97 & -0.90 & 0.77 & -0.61 & 0.53 \\ -0.11 & -1.00 & 1.00 & -0.98 & 0.92 & -0.79 & 0.62 & -0.54 \\ 0.10 & 0.97 & -0.98 & 1.00 & -0.97 & 0.86 & -0.70 & 0.60 \\ -0.09 & -0.90 & 0.92 & -0.97 & 1.00 & -0.95 & 0.82 & -0.72 \\ 0.05 & 0.77 & -0.79 & 0.86 & -0.95 & 1.00 & -0.95 & 0.88 \\ -0.01 & -0.61 & 0.62 & -0.70 & 0.82 & -0.95 & 1.00 & -0.98 \\ 0.01 & 0.53 & -0.54 & 0.60 & -0.72 & 0.88 & -0.98 & 1.00 \end {bmatrix}\)

Table 28 Estimated correlation matrices in the German Power Market, period 2021–2022. N is the number of factors

N

Estimated correlation matrix

6

\( \begin {bmatrix} 1.00 & -0.90 & 0.03 & -0.02 & 0.02 & -0.03 \\ -0.90 & 1.00 & -0.09 & 0.09 & -0.08 & 0.08 \\ 0.03 & -0.09 & 1.00 & -1.00 & 0.98 & -0.88 \\ -0.02 & 0.09 & -1.00 & 1.00 & -0.99 & 0.91 \\ 0.02 & -0.08 & 0.98 & -0.99 & 1.00 & -0.95 \\ -0.03 & 0.08 & -0.88 & 0.91 & -0.95 & 1.00 \end {bmatrix}\)

7

\( \begin {bmatrix} 1.00 & -0.99 & 0.06 & -0.05 & 0.04 & -0.01 & 0.00 \\ -0.99 & 1.00 & -0.07 & 0.07 & -0.06 & 0.01 & -0.01 \\ 0.06 & -0.07 & 1.00 & -1.00 & 0.99 & -0.80 & 0.77 \\ -0.05 & 0.07 & -1.00 & 1.00 & -1.00 & 0.82 & -0.80 \\ 0.04 & -0.06 & 0.99 & -1.00 & 1.00 & -0.84 & 0.83 \\ -0.01 & 0.01 & -0.80 & 0.82 & -0.84 & 1.00 & -1.00 \\ 0.00 & -0.01 & 0.77 & -0.80 & 0.83 & -1.00 & 1.00 \end {bmatrix}\)

8

\( \begin {bmatrix} 1.00 & -0.99 & 0.07 & -0.06 & 0.06 & -0.02 & 0.02 & -0.02 \\ -0.99 & 1.00 & -0.09 & 0.08 & -0.07 & 0.03 & -0.02 & 0.02 \\ 0.07 & -0.09 & 1.00 & -1.00 & 0.99 & -0.75 & 0.72 & -0.68 \\ -0.06 & 0.08 & -1.00 & 1.00 & -1.00 & 0.77 & -0.74 & 0.70 \\ 0.06 & -0.07 & 0.99 & -1.00 & 1.00 & -0.79 & 0.76 & -0.72 \\ -0.02 & 0.03 & -0.75 & 0.77 & -0.79 & 1.00 & -0.99 & 0.94 \\ 0.02 & -0.02 & 0.72 & -0.74 & 0.76 & -0.99 & 1.00 & -0.98 \\ -0.02 & 0.02 & -0.68 & 0.70 & -0.72 & 0.94 & -0.98 & 1.00 \end {bmatrix}\)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

FĂ©ron, O., Gruet, P. (2024). Estimation of the Number of Factors in a Multi-Factorial Heath-Jarrow-Morton Model in Power Markets. In: Benth, F.E., Veraart, A.E.D. (eds) Quantitative Energy Finance. Springer, Cham. https://doi.org/10.1007/978-3-031-50597-3_1

Download citation

Publish with us

Policies and ethics