Skip to main content

Emerging Treatment for Patients with Disorders of Consciousness: The Field of Neuromodulation

  • Chapter
  • First Online:
Coma and Disorders of Consciousness

Abstract

In this chapter, we review the major neurostimulation techniques being tested for intervention in patients with a disorder of consciousness (DOC). These include deep brain stimulation (DBS), spinal cord stimulation (SCS), vagus nerve stimulation (VNS), median nerve stimulation (MNS), transcranial electrical stimulation (tES), transcranial magnetic stimulation (TMS), and transcranial focus ultrasound stimulation (tFUS). We begin by summarizing the two main neuroscientific frameworks for understanding the relationship between brain dysfunction and loss and recovery of consciousness after injury, namely, the Mesocircuit Hypothesis and the ascending reticular activating system (ARAS). We then describe how each of these frameworks has motivated distinct pools of clinical research, with each supporting the selection of different targets and neurostimulatory techniques. The chapter then reviews, for each technique, the mechanisms of action, the rationale for its application in DOC, and the evidence to date. Finally, we conclude with a comparison of the techniques discussed as well as an overview of the current limitations of the field and opportunities for future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Magrassi et al. [93] evaluated 40 DOC patients, 29 VS/UWS, and 11 MCS and reported that 87% of the assessed cohort failed to meet basic criteria for DBS implantation.

  2. 2.

    The auricular branch of the vagus nerve is the only afferent branch of the nerve on the body’s surface, and it innervates the external acoustic meatus, inner tragus, and skin around the cymba concha. taVNS devices thus deliver electrical impulses to these parts of the external ear [206].

  3. 3.

    rTMS does, however, seem compatible with intracranial electrodes.

Abbreviations

ABR:

Auditory brainstem response

ACC:

Anterior cingulate cortex

AEP:

Auditory-evoked potential

ARAS:

Ascending reticular activating system

ASL:

Arterial spin labeling

BAEP:

Brainstem auditory-evoked potential

C/NC:

Coma/Near Coma

CBF:

Cerebral blood flow

CBV :

Cerebral blood volume

CGI-I:

Clinical Global Impression—Improvement

CRS-R:

Coma Recovery Scale-Revised

CT:

Controlled trial

DB:

Double blind

DBS:

Deep brain stimulation

DLPFC:

Dorsolateral prefrontal cortex

DMN:

Default mode network

DOC:

Disorder(s) of consciousness

DOCS:

Disorders of Consciousness Scale

ECG:

Electrocardiogram

EEG:

Electroencephalography

fMRI:

Functional magnetic resonance imaging

fNIRS:

Functional Near-Infrared Spectroscopy

FOUR:

The Full Outline of UnResponsiveness

GCS:

Glasgow Coma Scale

GOS:

Glasgow Outcome Scale

HBO:

Hyperbaric oxygen therapy

HC :

Healthy controls

IS:

Institutional scale

M1:

Primary motor cortex

MCS:

Minimally conscious state

MEG:

Magnetoencephalography

MEP:

Motor-evoked potential

MN:

Median nerve

MNS:

Median nerve stimulation

MPFC:

Medial prefrontal cortex

MRI:

Magnetic resonance imaging

Obs:

Observational

OL:

Open label

PCC:

Posterior cingulate cortex

PET:

Positron emission tomography

PFC:

Prefrontal cortex

RCT:

Randomized controlled trial

RDR:

Rappaport Disability Rating Scale

RF:

Reticular formation

rTMS:

Repetitive transcranial magnetic stimulation

SB:

Single blind

SCS:

Spinal cord stimulation

SEP:

Somatosensory-evoked potential

SPECT:

Single-photon emission computed tomography

taVNS:

Transcutaneous nerve stimulation

TBI:

Traumatic brain injury

TCD:

Transcranial Doppler Ultrasound

tES:

Transcranial electric stimulation

tFUS:

Transcranial focused ultrasound stimulation

TMS:

Transcranial magnetic stimulation

tSCS:

Transcutaneous spinal cord stimulation

TSI :

Time since injury

VNS:

Vagus nerve stimulation

VS/UWS:

Vegetative state/unresponsive wakefulness syndrome

WNSSP:

Western Neuro Sensory Stimulation Profile

References

  1. Edlow BL, et al. Therapies to restore consciousness in patients with severe brain injuries: a gap analysis and future directions. Neurocrit Care. 2021;35:68–85.

    Article  PubMed  Google Scholar 

  2. Schnakers C, Monti MM. Disorders of consciousness after severe brain injury: therapeutic options. Curr Opin Neurol. 2017;30(6):573–9.

    Article  PubMed  Google Scholar 

  3. Thibaut A, et al. Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol. 2019;18(6):600–14.

    Article  PubMed  Google Scholar 

  4. Giacino JT, et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med. 2012;366(9):819–26.

    Article  CAS  PubMed  Google Scholar 

  5. Whyte J, et al. Zolpidem and restoration of consciousness. Am J Phys Med Rehabil. 2014;93(2):101–13.

    Article  PubMed  Google Scholar 

  6. Machado C, et al. Zolpidem arousing effect in persistent vegetative state patients: autonomic, EEG and behavioral assessment. Curr Pharm Des. 2014;20(26):4185–202.

    CAS  PubMed  Google Scholar 

  7. Williams ST, et al. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury. eLife. 2013;2:e01157.

    Article  PubMed  Google Scholar 

  8. Margetis K, et al. Intrathecal baclofen associated with improvement of consciousness disorders in spasticity patients. Neuromodulation. 2014;17(7):699–704.

    Article  PubMed  Google Scholar 

  9. Fridman EA, et al. Continuous subcutaneous apomorphine for severe disorders of consciousness after traumatic brain injury. Brain Inj. 2010;24(4):636–41.

    Article  PubMed  Google Scholar 

  10. Carboncini MC, et al. A case of post-traumatic minimally conscious state reversed by midazolam: clinical aspects and neurophysiological correlates. Restor Neurol Neurosci. 2014;32(6):767–87.

    CAS  PubMed  Google Scholar 

  11. Lanzillo B, et al. Does pain relief influence recovery of consciousness? A case report of a patient treated with ziconotide. Eur J Phys Rehabil Med. 2016;52(2):263–6.

    PubMed  Google Scholar 

  12. Noda R, Maeda Y, Yoshino A. Effects of musicokinetic therapy and spinal cord stimulation on patients in a persistent vegetative state. Acta Neurochir Suppl. 2003;87:23–6.

    CAS  PubMed  Google Scholar 

  13. Werner C, Byhahn M, Hesse S. Non-invasive brain stimulation to promote alertness and awareness in chronic patients with disorders of consciousness: low-level, near-infrared laser stimulation vs. focused shock wave therapy. Restor Neurol Neurosci. 2016;34:561–9.

    PubMed  Google Scholar 

  14. Morison RS, Dempsey EW. A study of thalamo-cortical relations. Am J Physiol Legacy Content. 1941;135(2):281–92.

    Article  Google Scholar 

  15. Jasper H, Naquet R, King EE. Thalamocortical recruiting responses in sensory receiving areas in the cat. Electroencephalogr Clin Neurophysiol. 1955;7(1):99–114.

    Article  CAS  PubMed  Google Scholar 

  16. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1(1–4):455–73.

    Article  CAS  PubMed  Google Scholar 

  17. Morison R, Dempsey E, Morison B. Cortical responses from electrical stimulation of the brain stem. Am J Physiol Legacy Content. 1940;131(3):732–43.

    Article  Google Scholar 

  18. Jasper H, Hunter J, Knighton R. Experimental studies of thalamo-cortical systems. Trans Am Neurol Assoc. 1948;73(73 Annual Meet):210–2.

    CAS  PubMed  Google Scholar 

  19. Ward A. The relationship between the bulbar-reticular-suppressor region and the EEG in electroencephalography and clinical neurophysiology. Elsevier Sci Ireland Ltd; 1949.

    Google Scholar 

  20. Bremer F. Cerveau “isolé” et physiologie du sommeil. C R Soc Biol (Paris). 1935;118:1235–41.

    Google Scholar 

  21. McCormick DA, Westbrook GL. Sleep and dreaming. In: Kandel ER, et al., editors. Principles of neural science. 5th ed. New York: McGraw-Hill Education; 2014.

    Google Scholar 

  22. McLardy T, et al. Attempted inset-electrodes-arousal from traumatic coma: neuropathological findings. Trans Am Neurol Assoc. 1968;93:25–30.

    CAS  PubMed  Google Scholar 

  23. Hassler R, et al. Behavioural and EEG arousal induced by stimulation of unspecific projection systems in a patient with post-traumatic apallic syndrome. Electroencephalogr Clin Neurophysiol. 1969;27(3):306–10.

    Article  CAS  PubMed  Google Scholar 

  24. Sturm V, et al. Chronic electrical stimulation of the thalamic unspecific activating system in a patient with coma due to midbrain and upper brain stem infarction. Acta Neurochir. 1979;47(3):235–44.

    Article  CAS  PubMed  Google Scholar 

  25. Hassler R, et al. EEG and clinical arousal induced by bilateral long-term stimulation of pallidal systems in traumatic vigil coma. Electroencephalogr Clin Neurophysiol. 1969;27(7):689–90.

    Article  CAS  PubMed  Google Scholar 

  26. Cohadon F, et al. Deep brain stimulations in cases of prolonged post-traumatic unconsciousness. In: Advances in stereotactic and functional neurosurgery, vol. 6. Springer; 1984. p. 535–7.

    Chapter  Google Scholar 

  27. Deliac P, et al. Electrophysiological development under thalamic stimulation of post-traumatic persistent vegetative states. Apropos of 25 cases. Neurochirurgie. 1993;39(5):293–303.

    CAS  PubMed  Google Scholar 

  28. Tsubokawa T, et al. Deep-brain stimulation in a persistent vegetative state: follow-up results and criteria for selection of candidates. Brain Inj. 1990;4(4):315–27.

    Article  CAS  PubMed  Google Scholar 

  29. Hosobuchi Y, Yingling C. The treatment of prolonged coma with neurostimulation. Adv Neurol. 1993;63:247–51.

    CAS  PubMed  Google Scholar 

  30. Cohadon F, Richer E. Stimulation cérébrale profonde chez les patients en état végétatif post-traumatique: 25 observations. Neurochirurgie (Paris). 1993;39(5):281–92.

    CAS  Google Scholar 

  31. Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci. 2010;33(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  32. Schiff ND. Mesocircuit mechanisms underlying recovery of consciousness following severe brain injuries: model and predictions. In: Brain function and responsiveness in disorders of consciousness. Cham: Springer; 2016. p. 195–204.

    Chapter  Google Scholar 

  33. Giacino JT, et al. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol. 2014;10(2):99–114.

    Article  PubMed  Google Scholar 

  34. Monti MM. Cognition in the vegetative state. Annu Rev Clin Psychol. 2012;8:431–54.

    Article  PubMed  Google Scholar 

  35. Schiff ND. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci. 2008;1129(1):105–18.

    Article  PubMed  Google Scholar 

  36. Scannell J, et al. The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex. 1999;9(3):277–99.

    Article  CAS  PubMed  Google Scholar 

  37. Grillner S, et al. Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci. 2005;28(7):364–70.

    Article  CAS  PubMed  Google Scholar 

  38. Fridman EA, et al. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proc Natl Acad Sci U S A. 2014;111(17):6473–8.

    Article  CAS  PubMed  Google Scholar 

  39. Adams JH, et al. The neuropathology of the vegetative state after head injury. J Clin Pathol. 1999;52(11):804.

    Article  CAS  PubMed  Google Scholar 

  40. Graham D, et al. The neuropathology of the vegetative state and severe disability after non-missile head injury. In: Trauma and regeneration: special symposium of the 9th International Congress of Neuropathology, Vienna, September 1982. Springer; 1983.

    Google Scholar 

  41. Adams JH, Graham DI, Jennett B. The neuropathology of the vegetative state after an acute brain insult. Brain. 2000;123(7):1327–38.

    Article  PubMed  Google Scholar 

  42. Graham DI, et al. Novel aspects of the neuropathology of the vegetative state after blunt head injury. Prog Brain Res. 2005;150:445–55.

    Article  CAS  PubMed  Google Scholar 

  43. Lutkenhoff ES, et al. Thalamic atrophy in antero-medial and dorsal nuclei correlates with six-month outcome after severe brain injury. NeuroImage Clin. 2013;3:396–404.

    Article  PubMed  Google Scholar 

  44. Zheng ZS, et al. Disentangling disorders of consciousness: insights from diffusion tensor imaging and machine learning. Hum Brain Mapp. 2017;38(1):431–43.

    Article  CAS  PubMed  Google Scholar 

  45. Fernández-Espejo D, et al. Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state. NeuroImage. 2011;54(1):103–12.

    Article  PubMed  Google Scholar 

  46. Fernández-Espejo D, et al. A role for the default mode network in the bases of disorders of consciousness. Ann Neurol. 2012;72(3):335–43.

    Article  PubMed  Google Scholar 

  47. Vanhaudenhuyse A, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain. 2009;133(1):161–71.

    Article  PubMed  Google Scholar 

  48. Crone JS, et al. Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network. NeuroImage. 2015;110:101–9.

    Article  PubMed  Google Scholar 

  49. Lant ND, et al. Relationship between the anterior forebrain mesocircuit and the default mode network in the structural bases of disorders of consciousness. NeuroImage Clin. 2016;10:27–35.

    Article  PubMed  Google Scholar 

  50. Monti MM, et al. Thalamo-frontal connectivity mediates top-down cognitive functions in disorders of consciousness. Neurology. 2015;84(2):167–73.

    Article  PubMed  Google Scholar 

  51. Demertzi A, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain. 2015;138(9):2619–31.

    Article  PubMed  Google Scholar 

  52. Yao S, et al. Thalamocortical sensorimotor circuit damage associated with disorders of consciousness for diffuse axonal injury patients. J Neurol Sci. 2015;356(1):168–74.

    Article  PubMed  Google Scholar 

  53. Crone JS, et al. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. NeuroImage Clin. 2014;4:240–8.

    Article  PubMed  Google Scholar 

  54. Soddu A, et al. Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness. Hum Brain Mapp. 2012;33(4):778–96.

    Article  PubMed  Google Scholar 

  55. Weng L, et al. Abnormal structural connectivity between the basal ganglia, thalamus, and frontal cortex in patients with disorders of consciousness. Cortex. 2017;90:71–87.

    Article  PubMed  Google Scholar 

  56. Ferraro S, et al. Interhemispherical anatomical disconnection in disorders of consciousness patients. J Neurotrauma. 2018;36(10):1535–43.

    Article  Google Scholar 

  57. Jennett B. The vegetative state. BMJ Publishing Group Ltd.; 2002. p. 355–7.

    Book  Google Scholar 

  58. Stender J, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet. 2014;384(9942):514–22.

    Article  PubMed  Google Scholar 

  59. Lull N, et al. Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition. Brain Inj. 2010;24(9):1098–107.

    Article  PubMed  Google Scholar 

  60. Lull N, et al. Thalamic metabolism and neurological outcome after traumatic brain injury. A voxel-based morphometric FDG-PET study. Neurología (English Edition). 2010;25(3):174–80.

    Article  CAS  Google Scholar 

  61. Nakayama N, et al. Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis. J Neurol Neurosurg Psychiatry. 2006;77(7):856–62.

    Article  CAS  PubMed  Google Scholar 

  62. Bodart O, et al. Measures of metabolism and complexity in the brain of patients with disorders of consciousness. NeuroImage Clin. 2017;14:354–62.

    Article  PubMed  Google Scholar 

  63. Stender J, et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients. J Cereb Blood Flow Metab. 2015;35(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  64. Laureys S, Owen AM, Schiff ND. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004;3(9):537–46.

    Article  PubMed  Google Scholar 

  65. Thibaut A, et al. Metabolic activity in external and internal awareness networks in severely brain-damaged patients. J Rehabil Med. 2012;44(6):487.

    Article  PubMed  Google Scholar 

  66. García-Panach J, et al. A voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas. J Neurotrauma. 2011;28(9):1707–17.

    Article  PubMed  Google Scholar 

  67. Wu B, et al. Could arterial spin labeling distinguish patients in minimally conscious state from patients in vegetative state? Front Neurol. 2018;9:110.

    Article  PubMed  Google Scholar 

  68. Liu A, et al. Arterial spin labeling and altered cerebral blood flow patterns in the minimally conscious state. Neurology. 2011;77(16):1518–23.

    Article  CAS  PubMed  Google Scholar 

  69. Shiina G, et al. Sequential assessment of cerebral blood flow in diffuse brain injury by 123I-iodoamphetamine single-photon emission CT. Am J Neuroradiol. 1998;19(2):297–302.

    CAS  PubMed  Google Scholar 

  70. Sato M, et al. Regional cerebral blood flow in the persistent vegetative state. Neurol Med Chir. 1989;29(5):389–94.

    Article  CAS  Google Scholar 

  71. Lutkenhoff ES, et al. EEG power spectra and subcortical pathology in chronic disorders of consciousness. Psychol Med. 2022;52(8):1491–500.

    Article  PubMed  Google Scholar 

  72. Lechinger J, et al. CRS-R score in disorders of consciousness is strongly related to spectral EEG at rest. J Neurol. 2013;260:2348–56.

    Article  PubMed  Google Scholar 

  73. Bagnato S, et al. EEG predictors of outcome in patients with disorders of consciousness admitted for intensive rehabilitation. Clin Neurophysiol. 2015;126(5):959–66.

    Article  PubMed  Google Scholar 

  74. Fingelkurts AA, et al. The value of spontaneous EEG oscillations in distinguishing patients in vegetative and minimally conscious states. In: Supplements to clinical neurophysiology. Elsevier; 2013. p. 81–99.

    Google Scholar 

  75. Faugeras F, et al. Probing consciousness with event-related potentials in the vegetative state. Neurology. 2011;77(3):264–8.

    Article  CAS  PubMed  Google Scholar 

  76. Casarotto S, et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann Neurol. 2016;80(5):718–29.

    Article  PubMed  Google Scholar 

  77. Sitt JD, et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain. 2014;137(8):2258–70.

    Article  PubMed  Google Scholar 

  78. Maldonato M. The ascending reticular activating system. In: Recent advances of neural network models and applications. Springer; 2014. p. 333–44.

    Chapter  Google Scholar 

  79. Edlow BL, et al. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol. 2012;71(6):531–46.

    Article  PubMed  Google Scholar 

  80. Jang SH, Kwon YH. The relationship between consciousness and the ascending reticular activating system in patients with traumatic brain injury. BMC Neurol. 2020;20(1):375.

    Article  PubMed  Google Scholar 

  81. Young GB, Pigott SE. Neurobiological basis of consciousness. Arch Neurol. 1999;56(2):153–7.

    Article  CAS  PubMed  Google Scholar 

  82. Kovalzon VM. Ascending reticular activating system of the brain. Transl Neurosci Clin. 2016;2(4):275–85.

    Article  Google Scholar 

  83. Edlow BL, et al. Disconnection of the ascending arousal system in traumatic coma. J Neuropathol Exp Neurol. 2013;72(6):505–23.

    Article  PubMed  Google Scholar 

  84. Richerson GB, Aston-Jones G, Saper CB. The modulatory functions of the brain stem. In: Kandel ER, et al., editors. Principles of neural science. 5th ed. New York: McGraw-Hill Education; 2014.

    Google Scholar 

  85. Parvizi J, Damasio AR. Neuroanatomical correlates of brainstem coma. Brain. 2003;126(7):1524–36.

    Article  PubMed  Google Scholar 

  86. Briand M-M, et al. Transcutaneous auricular vagal nerve stimulation and disorders of consciousness: a hypothesis for mechanisms of action. Front Neurol. 2020;11:933.

    Article  PubMed  Google Scholar 

  87. Lozano AM, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148–60.

    Article  PubMed  Google Scholar 

  88. McIntyre CC, et al. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol. 2004;115(6):1239–48.

    Article  PubMed  Google Scholar 

  89. Agnesi F, Johnson MD, Vitek JL. Deep brain stimulation: how does it work? Handb Clin Neurol. 2013;116:39–54.

    Article  PubMed  Google Scholar 

  90. Ragazzoni A, et al. Clinical neurophysiology of prolonged disorders of consciousness: from diagnostic stimulation to therapeutic neuromodulation. Clin Neurophysiol. 2017;128(9):1629–46.

    Article  PubMed  Google Scholar 

  91. Krack P, et al. Deep brain stimulation in movement disorders: from experimental surgery to evidence-based therapy. Mov Disord. 2019;34(12):1795–810.

    Article  PubMed  Google Scholar 

  92. Giacino J, et al. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. Neuromodulation. 2012;15(4):339–49.

    Article  PubMed  Google Scholar 

  93. Magrassi L, et al. Results of a prospective study (CATS) on the effects of thalamic stimulation in minimally conscious and vegetative state patients. J Neurosurg. 2016;125(4):972–81.

    Article  PubMed  Google Scholar 

  94. Guerra A, et al. Disorders of consciousness and electrophysiological treatment strategies: a review of the literature and new perspectives. Curr Pharm Des. 2014;20(26):4248–67.

    CAS  PubMed  Google Scholar 

  95. Vanhoecke J, Hariz M. Deep brain stimulation for disorders of consciousness: systematic review of cases and ethics. Brain Stimul. 2017;10(6):1013–23.

    Article  PubMed  Google Scholar 

  96. Fins JJ. A proposed ethical framework for interventional cognitive neuroscience: a consideration of deep brain stimulation impaired consciousness. Neurol Res. 2000;22(3):273–8.

    Article  CAS  PubMed  Google Scholar 

  97. Katayama Y, et al. Characterization and modification of brain activity with deep brain stimulation in patients in a persistent vegetative state: pain-related late positive component of cerebral evoked potential. Pacing Clin Electrophysiol. 1991;14(1):116–21.

    Article  CAS  PubMed  Google Scholar 

  98. Cohadon F, Richer E. Deep cerebral stimulation in patients with post-traumatic vegetative state. 25 cases. Neurochirurgie. 1993;39(5):281–92.

    CAS  PubMed  Google Scholar 

  99. Yamamoto T, et al. Deep brain stimulation therapy for a persistent vegetative state. In: Functional rehabilitation in neurosurgery and neurotraumatology. Springer; 2002. p. 79–82.

    Chapter  Google Scholar 

  100. Yamamoto T, et al. DBS therapy for a persistent vegetative state: ten years follow-up results. In: Neurosurgical re-engineering of the damaged brain and spinal cord. Springer; 2003. p. 15–8.

    Chapter  Google Scholar 

  101. Yamamoto T, et al. DBS therapy for the vegetative state and minimally conscious state. In: Re-engineering of the damaged brain and spinal cord. Springer; 2005. p. 101–4.

    Chapter  Google Scholar 

  102. Yamamoto T, et al. Deep brain stimulation for the treatment of vegetative state. Eur J Neurosci. 2010;32(7):1145–51.

    Article  PubMed  Google Scholar 

  103. Schiff ND, et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 2007;448(7153):600–3.

    Article  CAS  PubMed  Google Scholar 

  104. Chudy D, et al. Deep brain stimulation for the early treatment of the minimally conscious state and vegetative state: experience in 14 patients. J Neurosurg. 2018;128(4):1189–98.

    Article  PubMed  Google Scholar 

  105. Lemaire JJ, et al. Deep brain stimulation in five patients with severe disorders of consciousness. Ann Clin Transl Neurol. 2018;5(11):1372–84.

    Article  PubMed  Google Scholar 

  106. Wojtecki L, et al. Modulation of central thalamic oscillations during emotional-cognitive processing in chronic disorder of consciousness. Cortex. 2014;60:94–102.

    Article  PubMed  Google Scholar 

  107. Adams ZM, et al. Late and progressive alterations of sleep dynamics following central thalamic deep brain stimulation (CT-DBS) in chronic minimally conscious state. Clin Neurophysiol. 2016;127(9):3086–92.

    Article  PubMed  Google Scholar 

  108. Raguž M, et al. Structural changes in brains of patients with disorders of consciousness treated with deep brain stimulation. Sci Rep. 2021;11(1):4401.

    Article  PubMed  Google Scholar 

  109. Arnts H, et al. Clinical and neurophysiological effects of central thalamic deep brain stimulation in the minimally conscious state after severe brain injury. Sci Rep. 2022;12(1):12932.

    Article  CAS  PubMed  Google Scholar 

  110. Dang Y, et al. Deep brain stimulation improves electroencephalogram functional connectivity of patients with minimally conscious state. CNS Neurosci Ther. 2023;29(1):344–53.

    Article  PubMed  Google Scholar 

  111. Blackmore DG, Razansky D, Götz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron. 2023;111(8):1174–90.

    Article  CAS  PubMed  Google Scholar 

  112. Baek H, Pahk KJ, Kim H. A review of low-intensity focused ultrasound for neuromodulation. Biomed Eng Lett. 2017;7(2):135–42.

    Article  PubMed  Google Scholar 

  113. Darmani G, et al. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin Neurophysiol. 2022;135:51–73.

    Article  CAS  PubMed  Google Scholar 

  114. Bystritsky A, Korb A. A review of low-intensity transcranial focused ultrasound for clinical applications. Curr Behav Neurosci Rep. 2015;2(2):60–6.

    Article  Google Scholar 

  115. Cain JA, et al. Real time and delayed effects of subcortical low intensity focused ultrasound. Sci Rep. 2021;11(1):1–14.

    Article  Google Scholar 

  116. Cain JA, et al. Ultrasonic thalamic stimulation in chronic disorders of consciousness. Brain Stimul. 2021;14(2):301–3.

    Article  PubMed  Google Scholar 

  117. Cain JA, et al. Ultrasonic deep brain neuromodulation in acute disorders of consciousness: a proof-of-concept. Brain Sci. 2022;12(4):428.

    Article  PubMed  Google Scholar 

  118. Monti MM, et al. Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: a first-in-man report. Brain Stimul. 2016;9(6):940–1.

    Article  PubMed  Google Scholar 

  119. Cain JA, et al. Neural correlates of behavioral recovery following ultrasonic thalamic stimulation in chronic disorders of consciousness. medRxiv. 2023;2023:2023.07.13.23292523.

    Google Scholar 

  120. Mekhail NA, et al. Retrospective review of 707 cases of spinal cord stimulation: indications and complications. Pain Pract. 2011;11(2):148–53.

    Article  PubMed  Google Scholar 

  121. Bendersky D, Yampolsky C. Is spinal cord stimulation safe? A review of its complications. World Neurosurg. 2014;82(6):1359–68.

    Article  PubMed  Google Scholar 

  122. Shealy CN, et al. Electrical inhibition of pain: experimental evaluation. Anesth Analg. 1967;46(3):299–305.

    Article  CAS  PubMed  Google Scholar 

  123. Walsh KM, Machado AG, Krishnaney AA. Spinal cord stimulation: a review of the safety literature and proposal for perioperative evaluation and management. Spine J. 2015;15(8):1864–9.

    Article  PubMed  Google Scholar 

  124. Dimitrijevic MM, et al. Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: I. Clinical observations. Central Nervous Syst Trauma. 1986;3(2):129–43.

    Article  CAS  Google Scholar 

  125. Hofstoetter US, et al. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2014;37(2):202–11.

    Article  PubMed  Google Scholar 

  126. Siegfried J, et al. Electrical spinal cord stimulation for spastic movement disorders. Stereotact Funct Neurosurg. 1978;41(1–4):134–41.

    Article  CAS  Google Scholar 

  127. Kanno T, et al. Neurostimulation for patients in vegetative status. Pacing Clin Electrophysiol. 1987;10(1):207–8.

    Article  CAS  PubMed  Google Scholar 

  128. Hosobuchi Y. Electrical stimulation of the cervical spinal cord increases cerebral blood flow in humans. Stereotact Funct Neurosurg. 1985;48(1–6):372–6.

    Article  CAS  Google Scholar 

  129. Matsui T, et al. Beneficial effects of cervical spinal cord stimulation (cSCS) on patients with impaired consciousness: a preliminary report. Pacing Clin Electrophysiol. 1989;12(4 Pt 2):718–25.

    Article  CAS  PubMed  Google Scholar 

  130. Kanno T, et al. Effects of dorsal column spinal cord stimulation (DCS) on reversibility of neuronal function—experience of treatment for vegetative states. Pacing Clin Electrophysiol. 1989;12(4 Pt 2):733–8.

    Article  CAS  PubMed  Google Scholar 

  131. Yamamoto T, et al. Spinal cord stimulation for treatment of patients in the minimally conscious state. Neurol Med Chir. 2012;52(7):475–81.

    Article  Google Scholar 

  132. Visocchi M, et al. Spinal cord stimulation prevents the effects of combined experimental ischemic and traumatic brain injury. Stereotact Funct Neurosurg. 2001;76(3–4):276–81.

    Article  CAS  PubMed  Google Scholar 

  133. Bai Y, et al. Spinal cord stimulation modulates frontal delta and gamma in patients of minimally consciousness state. Neuroscience. 2017;346:247–54.

    Article  CAS  PubMed  Google Scholar 

  134. Yamaguchi N, et al. Effects of cervical spinal cord stimulation on glucose consumption in patients with posttraumatic prolonged unconsciousness. Neurol Med Chir. 1995;35(11):797–803.

    Article  CAS  Google Scholar 

  135. Della Pepa GM, et al. Neuromodulation of vegetative state through spinal cord stimulation: where are we now and where are we going? Stereotact Funct Neurosurg. 2013;91(5):275–87.

    Article  PubMed  Google Scholar 

  136. Kishima H, et al. Modulation of neuronal activity after spinal cord stimulation for neuropathic pain; H215O PET study. NeuroImage. 2010;49(3):2564–9.

    Article  PubMed  Google Scholar 

  137. Yang Y, et al. Long-term functional prognosis and related factors of spinal cord stimulation in patients with disorders of consciousness. CNS Neurosci Ther. 2022;28(8):1249–58.

    Article  PubMed  Google Scholar 

  138. Gu Y, et al. Efficacy of high-cervical spinal cord stimulation in vegetative patients and its effect on blood flow Neurology Asia. 2022;27(3).

    Google Scholar 

  139. Nardone R, et al. Noninvasive spinal cord stimulation: technical aspects and therapeutic applications. Neuromodulation. 2015;18(7):580–91.

    Article  PubMed  Google Scholar 

  140. Gerasimenko Y, et al. Transcutaneous electrical spinal-cord stimulation in humans. Ann Phys Rehabil Med. 2015;58(4):225–31.

    Article  PubMed  Google Scholar 

  141. Steele AG, et al. Effects of transcutaneous spinal stimulation on spatiotemporal cortical activation patterns: a proof-of-concept EEG study. J Neural Eng. 2022;19(4):046001.

    Article  Google Scholar 

  142. Herman R, et al. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord. 2002;40(2):65–8.

    Article  CAS  PubMed  Google Scholar 

  143. Inanici F, et al. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans Neural Syst Rehabil Eng. 2021;29:310–9.

    Article  PubMed  Google Scholar 

  144. Baindurashvili A, et al. Comprehensive treatment of a patient with complicated thoracic spine injury using percutaneous electrical spinal cord stimulation (case report). Genij Ortopedii. 2020;26(1):79–88.

    Article  Google Scholar 

  145. Kanno T, et al. Effects of neurostimulation on the reversibility of neuronal function: experience of treatment for vegetative status. No Shinkei Geka. 1988;16(2):157–63.

    CAS  PubMed  Google Scholar 

  146. Momose T, et al. Effect of cervical spinal cord stimulation (cSCS) on cerebral glucose metabolism and blood flow in a vegetative patient assessed by positron emission tomography (PET) and single photon emission computed tomography (SPECT). Radiat Med. 1989;7(5):243–6.

    CAS  PubMed  Google Scholar 

  147. Funahashi K, et al. Effects and indications of spinal cord stimulation on the vegetative syndrome. No Shinkei Geka. 1989;17(10):917–23.

    CAS  PubMed  Google Scholar 

  148. Yokoyama T, et al. Treatment of vegetative status with dorsum column stimulation. No Shinkei Geka. 1990;18(1):39–45.

    CAS  PubMed  Google Scholar 

  149. Kuwata T. Effects of the cervical spinal cord stimulation on persistent vegetative syndrome: experimental and clinical study. No Shinkei Geka. 1993;21(4):325–31.

    CAS  PubMed  Google Scholar 

  150. Fujii M, et al. Spinal cord stimulation therapy at an early stage for unresponsive patients with hypoxic encephalopathy. No Shinkei Geka. 1998;26(4):315–21.

    CAS  PubMed  Google Scholar 

  151. Liu J-T, Tan W-C, Liao W-J. Effects of electrical cervical spinal cord stimulation on cerebral blood perfusion, cerebrospinal fluid catecholamine levels, and oxidative stress in comatose patients. Springer; 2008.

    Book  Google Scholar 

  152. Liu J-T, et al. Neuromodulation on cervical spinal cord combined with hyperbaric oxygen in comatose patients—a preliminary report. Surg Neurol. 2009;72:S28–34.

    Article  PubMed  Google Scholar 

  153. Oyama H, et al. Recovery of consciousness by electrical dorsal column stimulation in brain injury patients. No Shinkei Geka. 2011;39(5):465–72.

    PubMed  Google Scholar 

  154. Kanno T, et al. Dorsal column stimulation in persistent vegetative state. Neuromodulation. 2009;12(1):33–8.

    Article  PubMed  Google Scholar 

  155. Yamamoto T, et al. Spinal cord stimulation for vegetative state and minimally conscious state: changes in consciousness level and motor function. Acta Neurochir Suppl. 2017;124:37–42.

    Article  PubMed  Google Scholar 

  156. Bai Y, et al. Frontal connectivity in EEG gamma (30–45 Hz) respond to spinal cord stimulation in minimally conscious state patients. Front Cell Neurosci. 2017;11:177.

    Article  PubMed  Google Scholar 

  157. Zhang Y, et al. Influence of inter-stimulus interval of spinal cord stimulation in patients with disorders of consciousness: a preliminary functional near-infrared spectroscopy study. NeuroImage Clin. 2018;17:1–9.

    Article  PubMed  Google Scholar 

  158. Si J, et al. Spinal cord stimulation frequency influences the hemodynamic response in patients with disorders of consciousness. Neurosci Bull. 2018;34(4):659–67.

    Article  PubMed  Google Scholar 

  159. Liang Z, et al. Long-range temporal correlations of patients in minimally conscious state modulated by spinal cord stimulation. Front Physiol. 2018;9:1511.

    Article  PubMed  Google Scholar 

  160. Xu Y, et al. Cervical spinal cord stimulation for the vegetative state: a preliminary result of 12 cases. Neuromodulation. 2019;22(3):347–54.

    Article  PubMed  Google Scholar 

  161. Wang Y, et al. Spinal cord stimulation modulates complexity of neural activities in patients with disorders of consciousness. Int J Neurosci. 2020;130(7):662–70.

    Article  PubMed  Google Scholar 

  162. Zhuang Y, et al. Effects of short-term spinal cord stimulation on patients with prolonged disorder of consciousness: a pilot study. Front Neurol. 2022;13:1026221.

    Article  PubMed  Google Scholar 

  163. Yang Y, He Q, He J. Short-term spinal cord stimulation in treating disorders of consciousness monitored by resting-state fMRI and qEEG: the first case report. Front Neurol. 2022;13:968932.

    Article  PubMed  Google Scholar 

  164. Vorobyev A, et al. The use of epidural spinal cord stimulation in patients with chronic disorders of consciousness–neuroimaging and clinical results. Eur Rev Med Pharmacol Sci. 2023;27(2):681–6.

    CAS  PubMed  Google Scholar 

  165. Wu X, et al. Acute traumatic coma awakening by right median nerve electrical stimulation: a randomised controlled trial. Intensive Care Med. 2023;49:633–44.

    Article  PubMed  Google Scholar 

  166. Lei J, et al. Right median nerve electrical stimulation for acute traumatic coma patients. J Neurotrauma. 2015;32(20):1584–9.

    Article  PubMed  Google Scholar 

  167. Günter C, Delbeke J, Ortiz-Catalan M. Safety of long-term electrical peripheral nerve stimulation: review of the state of the art. J Neuroeng Rehabil. 2019;16(1):13.

    Article  PubMed  Google Scholar 

  168. Muzyka IM, Estephan B. Chapter 35—Somatosensory evoked potentials. In: Levin KH, Chauvel P, editors. Handbook of clinical neurology. Elsevier; 2019. p. 523–40.

    Google Scholar 

  169. Scheepstra GL, et al. Median nerve evoked potentials during propofol anaesthesia. Br J Anaesth. 1989;62(1):92–4.

    Article  CAS  PubMed  Google Scholar 

  170. Supp GG, et al. Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Curr Biol. 2011;21(23):1988–93.

    Article  CAS  PubMed  Google Scholar 

  171. Huotari AM, et al. Evoked EEG patterns during burst suppression with propofol. Br J Anaesth. 2004;92(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  172. Yamada T, et al. Changes of short latency somatosensory evoked potential in sleep. Electroencephalogr Clin Neurophysiol. 1988;70(2):126–36.

    Article  CAS  PubMed  Google Scholar 

  173. Xu W, et al. Prediction of minimally conscious state with somatosensory evoked potentials in long-term unconscious patients after traumatic brain injury. J Trauma Acute Care Surg. 2012;72(4):1024–9.

    Article  PubMed  Google Scholar 

  174. Judson JA, Cant BR, Shaw NA. Early prediction of outcome from cerebral trauma by somatosensory evoked potentials. Crit Care Med. 1990;18(4):363–8.

    Article  CAS  PubMed  Google Scholar 

  175. Cant BR, et al. The assessment of severe head injury by short-latency somatosensory and brain-stem auditory evoked potentials. Electroencephalogr Clin Neurophysiol. 1986;65(3):188–95.

    Article  CAS  PubMed  Google Scholar 

  176. Gofton TE, et al. Functional MRI study of the primary somatosensory cortex in comatose survivors of cardiac arrest. Exp Neurol. 2009;217(2):320–7.

    Article  PubMed  Google Scholar 

  177. Robinson LR, et al. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31(3):960.

    Article  PubMed  Google Scholar 

  178. Hume AL, Cant BR, Shaw NA. Central somatosensory conduction time in comatose patients. Ann Neurol. 1979;5(4):379–84.

    Article  CAS  PubMed  Google Scholar 

  179. Bouwes A, et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol. 2012;71(2):206–12.

    Article  PubMed  Google Scholar 

  180. Estraneo A, et al. Predictors of recovery of responsiveness in prolonged anoxic vegetative state. Neurology. 2013;80(5):464–70.

    Article  PubMed  Google Scholar 

  181. Louise-Bender Pape T, et al. Repetitive transcranial magnetic stimulation-associated neurobehavioral gains during coma recovery. Brain Stimul. 2009;2(1):22–35.

    Article  PubMed  Google Scholar 

  182. Liu YS, et al. Clinical efficacy of hyperbaric oxygen combined with different timings of right median-nerve electrical stimulation in patients with brain injury-induced disorders of consciousness. Brain Behav. 2022;12(9):e2716.

    Article  CAS  PubMed  Google Scholar 

  183. Suzuki A, Nishimura H, Yoshioka K. Electrical stimulation of median nerve in patients of prolonged coma. Soc Treat Coma. 1994;3:75–85.

    Google Scholar 

  184. Cooper E, Kanno T. Electrical treatment of coma. In: Brain injury treatment: theories and practices. Routledge; 2005. p. 80.

    Google Scholar 

  185. Cooper E, et al. Right median nerve electrical stimulation of comatose patients. The Society for Treatment of Coma; 1996.

    Google Scholar 

  186. Yokoyama T, Kamei T, Kanno T. Right median nerve stimulation for comatose patients. Soc Treat Coma. 1996;5:117–25.

    Google Scholar 

  187. Yamamoto K, et al. A case of persistent vegetative state treated with median nerve stimulation. Soc Treat Coma. 1997;6:117–21.

    Google Scholar 

  188. Moriya T, Sakurai A, Hayashi N. New therapeutic strategies for patients with unconsciousness and neurological deficits in acute stage with median nerve stimulation. Soc Treat Coma. 1998;7:65–9.

    Google Scholar 

  189. Cooper JB, et al. Right median nerve electrical stimulation to hasten awakening from coma. Brain Inj. 1999;13(4):261–7.

    Article  CAS  PubMed  Google Scholar 

  190. Cooper E, Scherder E, Cooper J. Electrical treatment of reduced consciousness: experience with coma and Alzheimer’s disease. Neuropsychol Rehabil. 2005;15(3–4):389–405.

    Article  CAS  PubMed  Google Scholar 

  191. Backes WH, et al. Somatosensory cortex responses to median nerve stimulation: fMRI effects of current amplitude and selective attention. Clin Neurophysiol. 2000;111(10):1738–44.

    Article  CAS  PubMed  Google Scholar 

  192. Boly M, et al. Perception of pain in the minimally conscious state with PET activation: an observational study. Lancet Neurol. 2008;7(11):1013–20.

    Article  PubMed  Google Scholar 

  193. Laureys S, et al. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. NeuroImage. 2002;17(2):732–41.

    Article  CAS  PubMed  Google Scholar 

  194. Liu JT, et al. Regaining consciousness for prolonged comatose patients with right median nerve stimulation. Acta Neurochir Suppl. 2003;87:11–4.

    CAS  PubMed  Google Scholar 

  195. Peri CV, et al. Pilot study of electrical stimulation on median nerve in comatose severe brain injured patients: 3-month outcome. Brain Inj. 2001;15(10):903–10.

    Article  CAS  PubMed  Google Scholar 

  196. Buitrago MM, et al. Effects of somatosensory electrical stimulation on neuronal injury after global hypoxia-ischemia. Exp Brain Res. 2004;158:336–44.

    Article  PubMed  Google Scholar 

  197. Wu X, et al. Right median nerve electrical stimulation for acute traumatic coma (the Asia Coma Electrical Stimulation trial): study protocol for a randomised controlled trial. Trials. 2017;18(1):311.

    Article  PubMed  Google Scholar 

  198. Liu J-T, et al. Change in cerebral perfusion of patients with coma after treatment with right median nerve stimulation and hyperbaric oxygen. Neuromodulation. 2008;11(4):296–301.

    Article  PubMed  Google Scholar 

  199. Jia Y, et al. MicroRNA alteration in cerebrospinal fluid from comatose patients with traumatic brain injury after right median nerve stimulation. Exp Brain Res. 2022;240(9):2459–70.

    Article  CAS  PubMed  Google Scholar 

  200. Sharma V, Kaur H, Gupta D. Right median nerve stimulation for improving consciousness: a case series. Indian J Neurotrauma. 2015;12(02):144–8.

    Article  Google Scholar 

  201. Cooper EB, Cooper J. Electrical treatment of coma via the median nerve. Springer; 2003.

    Book  Google Scholar 

  202. Piccione F, et al. Behavioral and neurophysiological effects of repetitive transcranial magnetic stimulation on the minimally conscious state: a case study. Neurorehabil Neural Repair. 2010;25(1):98–102.

    Article  PubMed  Google Scholar 

  203. Ganesan A, Shivananda V, Jose N. The effect of right side median nerve stimulation along with multi sensory coma stimulation program on level of consciousness and neurobehavioural function among diffuse axonal injury patients—an experimental study. Int J Physiother Res. 2013;2013(3):83–7.

    Google Scholar 

  204. Nekkanti S, et al. Effect of right median nerve stimulation on level of consciousness in traumatic brain injury subjects. Asian J Pharm Res Health Care. 2016;8(3):67.

    Article  Google Scholar 

  205. Xiong Q, et al. Effect of single and combined median nerve stimulation and repetitive transcranial magnetic stimulation in patients with prolonged disorders of consciousness: a prospective, randomized, single-blinded, controlled trial. Front Aging Neurosci. 2023;15:1112768.

    Article  PubMed  Google Scholar 

  206. Butt MF, et al. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat. 2020;236(4):588–611.

    Article  PubMed  Google Scholar 

  207. Henry TR, et al. Acute blood flow changes and efficacy of vagus nerve stimulation in partial epilepsy. Neurology. 1999;52(6):1166.

    Article  CAS  PubMed  Google Scholar 

  208. Jaseja H. EEG-desynchronization as the major mechanism of anti-epileptic action of vagal nerve stimulation in patients with intractable seizures: clinical neurophysiological evidence. Med Hypotheses. 2010;74(5):855–6.

    Article  PubMed  Google Scholar 

  209. Engineer ND, et al. Targeted vagus nerve stimulation for rehabilitation after stroke. Front Neurosci. 2019;13:280.

    Article  PubMed  Google Scholar 

  210. Yu Y-t, et al. Transcutaneous auricular vagus nerve stimulation in disorders of consciousness monitored by fMRI: the first case report. Brain Stimul. 2017;10(2):328–30.

    Article  PubMed  Google Scholar 

  211. Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res. 2018;11:203–13.

    Article  CAS  PubMed  Google Scholar 

  212. Noé E, et al. Feasibility, safety and efficacy of transauricular vagus nerve stimulation in a cohort of patients with disorders of consciousness. Brain Stimul. 2020;13(2):427–9.

    Article  PubMed  Google Scholar 

  213. Hakon J, et al. Transcutaneous vagus nerve stimulation in patients with severe traumatic brain injury: a feasibility trial. Neuromodulation. 2020;23(6):859–64.

    Article  PubMed  Google Scholar 

  214. Deb S, et al. Rate of psychiatric illness 1 year after traumatic brain injury. Am J Psychiatr. 1999;156(3):374–8.

    Article  CAS  PubMed  Google Scholar 

  215. Vitello MM, et al. Transcutaneous vagal nerve stimulation to treat disorders of consciousness: protocol for a double-blind randomized controlled trial. Int J Clin Health Psychol. 2023;23(2):100360.

    Article  PubMed  Google Scholar 

  216. Corazzol M, et al. Restoring consciousness with vagus nerve stimulation. Curr Biol. 2017;27(18):R994–6.

    Article  CAS  PubMed  Google Scholar 

  217. Xiang X-J, et al. The clinical effect of vagus nerve stimulation in the treatment of patients with a minimally conscious state. J Neurorestoratol. 2020;8(3):160–71.

    Article  Google Scholar 

  218. Yu Y, et al. Cerebral hemodynamic correlates of transcutaneous auricular vagal nerve stimulation in consciousness restoration: an open-label pilot study. Front Neurol. 2021;12:684791.

    Article  PubMed  Google Scholar 

  219. Osińska A, et al. Non-invasive vagus nerve stimulation in treatment of disorders of consciousness—longitudinal case study. Front Neurosci. 2022;16:834507.

    Article  PubMed  Google Scholar 

  220. Yifei W, et al. Transcutaneous auricular vague nerve stimulation improved brain connection activity on patients of disorders of consciousness: a pilot study. J Tradit Chin Med. 2022;42(3):463–71.

    PubMed  Google Scholar 

  221. Wang L, et al. Preliminary study of vagus nerve magnetic modulation in patients with prolonged disorders of consciousness. Neuropsychiatr Dis Treat. 2022;18:2171–9.

    Article  PubMed  Google Scholar 

  222. Zhou Y-F, et al. Transauricular vagus nerve stimulation for patients with disorders of consciousness: a randomized controlled clinical trial. Front Neurol. 2023;14:1133893.

    Article  PubMed  Google Scholar 

  223. Radman T, et al. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2009;2(4):215–28, 228.e1–3.

    Article  PubMed  Google Scholar 

  224. Rosanova M, et al. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain. 2012;135(4):1308–20.

    Article  PubMed  Google Scholar 

  225. Ragazzoni A, et al. Vegetative versus minimally conscious states: a study using TMS-EEG, sensory and event-related potentials. PLoS One. 2013;8(2):e57069.

    Article  CAS  PubMed  Google Scholar 

  226. Pascual-Leone A, et al. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol. 1998;15(4):333–43.

    Article  CAS  PubMed  Google Scholar 

  227. Pascual-Leone A, et al. Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia. 1998;37(2):207–17.

    Article  Google Scholar 

  228. Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol. 2006;117(12):2584–96.

    Article  PubMed  Google Scholar 

  229. Gorsler A, et al. Interhemispheric effects of high and low frequency rTMS in healthy humans. Clin Neurophysiol. 2003;114(10):1800–7.

    Article  CAS  PubMed  Google Scholar 

  230. Pink AE, et al. The use of repetitive transcranial magnetic stimulation (rTMS) following traumatic brain injury (TBI): a scoping review. Neuropsychol Rehabil. 2021;31(3):479–505.

    Article  PubMed  Google Scholar 

  231. Rossi S, et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: expert guidelines. Clin Neurophysiol. 2021;132(1):269–306.

    Article  PubMed  Google Scholar 

  232. Rossi S, et al. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39.

    Article  PubMed  Google Scholar 

  233. Dhaliwal SK, Meek BP, Modirrousta MM. Non-invasive brain stimulation for the treatment of symptoms following traumatic brain injury. Front Psychiatry. 2015;6:119.

    Article  PubMed  Google Scholar 

  234. Manganotti P, et al. Effect of high-frequency repetitive transcranial magnetic stimulation on brain excitability in severely brain-injured patients in minimally conscious or vegetative state. Brain Stimul. 2013;6(6):913–21.

    Article  PubMed  Google Scholar 

  235. Cincotta M, et al. No effects of 20 Hz-rTMS of the primary motor cortex in vegetative state: a randomised, sham-controlled study. Cortex. 2015;71:368–76.

    Article  PubMed  Google Scholar 

  236. Liu P, et al. Effects of high-frequency repetitive transcranial magnetic stimulation on cerebral hemodynamics in patients with disorders of consciousness: a sham-controlled study. Eur Neurol. 2016;76(1–2):1–7.

    Article  PubMed  Google Scholar 

  237. He F, et al. Effects of 20 Hz repetitive transcranial magnetic stimulation on disorders of consciousness: a resting-state electroencephalography study. Neural Plast. 2018;2018:5036184.

    Article  PubMed  Google Scholar 

  238. Liu X, et al. Behavioral and resting state functional connectivity effects of high frequency rTMS on disorders of consciousness: a sham-controlled study. Front Neurol. 2018;9:982.

    Article  PubMed  Google Scholar 

  239. He RH, et al. The influence of high-frequency repetitive transcranial magnetic stimulation on endogenous estrogen in patients with disorders of consciousness. Brain Stimul. 2021;14(3):461–6.

    Article  PubMed  Google Scholar 

  240. Fan J, et al. Repetitive transcranial magnetic stimulation improves consciousness in some patients with disorders of consciousness. Clin Rehabil. 2022;36(7):916–25.

    Article  PubMed  Google Scholar 

  241. Liu M, et al. Effect of low frequency repetitive transcranial magnetic stimulation (rTMS) combined with hyperbaric oxygen (HBO) on awakening of coma patients with traumatic brain injury. J Healthc Eng. 2022;2022:6133626.

    Article  PubMed  Google Scholar 

  242. Ge X, et al. Effects of 10 Hz repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in the vegetative state. Exp Ther Med. 2021;21(3):206.

    Article  CAS  PubMed  Google Scholar 

  243. Legostaeva L, et al. Stimulation of the angular gyrus improves the level of consciousness. Brain Sci. 2019;9(5):103.

    Article  CAS  PubMed  Google Scholar 

  244. Xia X, et al. Effects of 10 Hz repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in disorders of consciousness. Front Neurol. 2017;8:182.

    Article  PubMed  Google Scholar 

  245. He R, et al. Differentiating responders and non-responders to rTMS treatment for disorder of consciousness using EEG after-effects. Front Neurol. 2020;11:583268.

    Article  PubMed  Google Scholar 

  246. Jang SH, Kwon YH. Effect of repetitive transcranial magnetic stimulation on the ascending reticular activating system in a patient with disorder of consciousness: a case report. BMC Neurol. 2020;20(1):37.

    Article  PubMed  Google Scholar 

  247. Bai Y, et al. Evaluating the effect of repetitive transcranial magnetic stimulation on disorders of consciousness by using TMS-EEG. Front Neurosci. 2016;10:473.

    Article  PubMed  Google Scholar 

  248. Naro A, et al. A single session of repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in patients with unresponsive wakefulness syndrome: preliminary results. Neurorehabil Neural Repair. 2015;29(7):603–13.

    Article  PubMed  Google Scholar 

  249. Xie Y, Zhang T, Chen ACN. Repetitive transcranial magnetic stimulation for the recovery of stroke patients with disturbance of consciousness. Brain Stimul. 2015;8(3):674–5.

    Article  PubMed  Google Scholar 

  250. Xia X, et al. Long-lasting repetitive transcranial magnetic stimulation modulates electroencephalography oscillation in patients with disorders of consciousness. Neuroreport. 2017;28(15):1022–9.

    Article  PubMed  Google Scholar 

  251. Xia X, et al. Transcranial magnetic stimulation-evoked connectivity reveals modulation effects of repetitive transcranial magnetic stimulation on patients with disorders of consciousness. Neuroreport. 2019;30(18):1307–15.

    Article  PubMed  Google Scholar 

  252. Pape TL-B, et al. RTMS safety for two subjects with disordered consciousness after traumatic brain injury. Brain Stimul. 2014;7(4):620–2.

    Article  PubMed  Google Scholar 

  253. Naro A, et al. Moving toward conscious pain processing detection in chronic disorders of consciousness: anterior cingulate cortex neuromodulation. J Pain. 2015;16(10):1022–31.

    Article  PubMed  Google Scholar 

  254. Lin Y, et al. Electroencephalography and functional magnetic resonance imaging-guided simultaneous transcranial direct current stimulation and repetitive transcranial magnetic stimulation in a patient with minimally conscious state. Front Neurosci. 2019;13:746.

    Article  PubMed  Google Scholar 

  255. Jang SH, Seo YS, Lee SJ. Increased thalamocortical connectivity to the medial prefrontal cortex with recovery of impaired consciousness in a stroke patient: a case report. Medicine (Baltimore). 2020;99(18):e19937.

    Article  PubMed  Google Scholar 

  256. Bender Pape TL, et al. A pilot trial examining the merits of combining amantadine and repetitive transcranial magnetic stimulation as an intervention for persons with disordered consciousness after TBI. J Head Trauma Rehabil. 2020;35(6):371.

    Article  PubMed  Google Scholar 

  257. Chen J-M, et al. Influence of high-frequency repetitive transcranial magnetic stimulation on neurobehavioral and electrophysiology in patients with disorders of consciousness. Neural Plast. 2022;2022:7195699.

    Article  PubMed  Google Scholar 

  258. Paulus W. Transcranial electrical stimulation (tES—tDCS; tRNS, tACS) methods. Neuropsychol Rehabil. 2011;21(5):602–17.

    Article  PubMed  Google Scholar 

  259. Lauro LJR, et al. TDCS increases cortical excitability: direct evidence from TMS–EEG. Cortex. 2014;58:99–111.

    Article  Google Scholar 

  260. Pellicciari MC, Brignani D, Miniussi C. Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach. NeuroImage. 2013;83:569–80.

    Article  PubMed  Google Scholar 

  261. Truong DQ, Bikson M. Physics of transcranial direct current stimulation devices and their history. J ECT. 2018;34(3):137–43.

    Article  PubMed  Google Scholar 

  262. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–901.

    Article  CAS  PubMed  Google Scholar 

  263. Lafon B, et al. Direct current stimulation alters neuronal input/output function. Brain Stimul. 2017;10(1):36–45.

    Article  PubMed  Google Scholar 

  264. Bolzoni F, Pettersson LG, Jankowska E. Evidence for long-lasting subcortical facilitation by transcranial direct current stimulation in the cat. J Physiol. 2013;591(13):3381–99.

    Article  CAS  PubMed  Google Scholar 

  265. Nonnekes J, et al. Subcortical structures in humans can be facilitated by transcranial direct current stimulation. PLoS One. 2014;9(9):e107731.

    Article  PubMed  Google Scholar 

  266. Clemens B, et al. Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest. PLoS One. 2014;9(4):e95984.

    Article  PubMed  Google Scholar 

  267. Polanía R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp. 2012;33(10):2499–508.

    Article  PubMed  Google Scholar 

  268. Aloi D, et al. tDCS modulates effective connectivity during motor command following; a potential therapeutic target for disorders of consciousness. NeuroImage. 2022;247:118781.

    Article  CAS  PubMed  Google Scholar 

  269. Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3(7):383–93.

    Article  PubMed  Google Scholar 

  270. Lefaucheur J-P, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56–92.

    Article  PubMed  Google Scholar 

  271. Antal A, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774–809.

    Article  CAS  PubMed  Google Scholar 

  272. Bikson M, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9(5):641–61.

    Article  PubMed  Google Scholar 

  273. Datta A, Bikson M, Fregni F. Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow. NeuroImage. 2010;52(4):1268–78.

    Article  PubMed  Google Scholar 

  274. Martens G, et al. Randomized controlled trial of home-based 4-week tDCS in chronic minimally conscious state. Brain Stimul. 2018;11(5):982–90.

    Article  PubMed  Google Scholar 

  275. Naro A, et al. Cortical connectivity modulation induced by cerebellar oscillatory transcranial direct current stimulation in patients with chronic disorders of consciousness: a marker of covert cognition? Clin Neurophysiol. 2016;127(3):1845–54.

    Article  PubMed  Google Scholar 

  276. Martens G, et al. A novel closed-loop EEG-tDCS approach to promote responsiveness of patients in minimally conscious state: a study protocol. Behav Brain Res. 2021;409:113311.

    Article  PubMed  Google Scholar 

  277. Angelakis E, et al. Transcranial direct current stimulation effects in disorders of consciousness. Arch Phys Med Rehabil. 2014;95(2):283–9.

    Article  PubMed  Google Scholar 

  278. Thibaut A, et al. tDCS in patients with disorders of consciousness. Sham-controlled randomized double-blind study. Neurology. 2014;82(13):1112–8.

    Article  PubMed  Google Scholar 

  279. Thibaut A, et al. Controlled clinical trial of repeated prefrontal tDCS in patients with chronic minimally conscious state. Brain Inj. 2017;31(4):466–74.

    Article  PubMed  Google Scholar 

  280. Bai Y, et al. TDCS modulates cortical excitability in patients with disorders of consciousness. NeuroImage Clin. 2017;15:702–9.

    Article  PubMed  Google Scholar 

  281. Zhang Y, et al. Transcranial direct current stimulation in patients with prolonged disorders of consciousness: combined behavioral and event-related potential evidence. Front Neurol. 2017;8:620.

    Article  PubMed  Google Scholar 

  282. Estraneo A, et al. Repeated transcranial direct current stimulation in prolonged disorders of consciousness: a double-blind cross-over study. J Neurol Sci. 2017;375:464–70.

    Article  PubMed  Google Scholar 

  283. Bai Y, et al. Fronto-parietal coherence response to tDCS modulation in patients with disorders of consciousness. Int J Neurosci. 2018;128(7):587–94.

    Article  PubMed  Google Scholar 

  284. Martens G, et al. Single tDCS session of motor cortex in patients with disorders of consciousness: a pilot study. Brain Inj. 2019;33(13–14):1679–83.

    Article  PubMed  Google Scholar 

  285. Wu M, et al. Efficiency of repetitive transcranial direct current stimulation of the dorsolateral prefrontal cortex in disorders of consciousness: a randomized sham-controlled study. Neural Plast. 2019;2019:7089543.

    Article  PubMed  Google Scholar 

  286. Zhang Y, et al. Neural correlates of different behavioral response to transcranial direct current stimulation between patients in the unresponsive wakefulness syndrome and minimally conscious state. Neurol Sci. 2020;41(1):75–82.

    Article  PubMed  Google Scholar 

  287. Hermann B, et al. Combined behavioral and electrophysiological evidence for a direct cortical effect of prefrontal tDCS on disorders of consciousness. Sci Rep. 2020;10(1):4323.

    Article  PubMed  Google Scholar 

  288. Carrière M, et al. Neurophysiological correlates of a single session of prefrontal tDCS in patients with prolonged disorders of consciousness: a pilot double-blind randomized controlled study. Brain Sci. 2020;10(7):469.

    Article  PubMed  Google Scholar 

  289. Han J, et al. High-definition transcranial direct current stimulation of the dorsolateral prefrontal cortex modulates the electroencephalography rhythmic activity of parietal occipital lobe in patients with chronic disorders of consciousness. Front Hum Neurosci. 2022;16:889023.

    Article  PubMed  Google Scholar 

  290. Han J, et al. Functional connectivity increases in response to high-definition transcranial direct current stimulation in patients with chronic disorder of consciousness. Brain Sci. 2022;12(8):1095.

    Article  PubMed  Google Scholar 

  291. Guo Y, et al. Effects of long-lasting high-definition transcranial direct current stimulation in chronic disorders of consciousness: a pilot study. Front Neurosci. 2019;13:412.

    Article  PubMed  Google Scholar 

  292. Cai T, et al. High-definition transcranial direct current stimulation modulates neural activities in patients with prolonged disorders of consciousness. Brain Stimul. 2019;12(6):1619–21.

    Article  PubMed  Google Scholar 

  293. Wang X, et al. Combined behavioral and mismatch negativity evidence for the effects of long-lasting high-definition tDCS in disorders of consciousness: a pilot study. Front Neurosci. 2020;14:381.

    Article  PubMed  Google Scholar 

  294. Zhang R, et al. Effects of high-definition transcranial direct-current stimulation on resting-state functional connectivity in patients with disorders of consciousness. Front Hum Neurosci. 2020;14:560586.

    Article  PubMed  Google Scholar 

  295. Zhang C, et al. Multidimensional assessment of electroencephalography in the neuromodulation of disorders of consciousness. Front Neurosci. 2022;16:903703.

    Article  PubMed  Google Scholar 

  296. Sharova EV, et al. Changes in spontaneous brain bioelectrical activity during transcranial electrical and electromagnetic stimulation. Neurosci Behav Physiol. 2007;37(5):451–7.

    Article  CAS  PubMed  Google Scholar 

  297. Naro A, et al. Can transcranial direct current stimulation be useful in differentiating unresponsive wakefulness syndrome from minimally conscious state patients? Restor Neurol Neurosci. 2015;33:159–76.

    PubMed  Google Scholar 

  298. Naro A, et al. Transcranial alternating current stimulation in patients with chronic disorder of consciousness: a possible way to cut the diagnostic Gordian knot? Brain Topogr. 2016;29(4):623–44.

    Article  PubMed  Google Scholar 

  299. Dimitri D, et al. Evaluation of the effectiveness of transcranial direct current stimulation (tDCS) and psychosensory stimulation through DOCS scale in a minimally conscious subject. Neurocase. 2017;23(2):96–104.

    Article  PubMed  Google Scholar 

  300. Huang W, et al. Repeated stimulation of the posterior parietal cortex in patients in minimally conscious state: a sham-controlled randomized clinical trial. Brain Stimul. 2017;10(3):718–20.

    Article  PubMed  Google Scholar 

  301. Mancuso M, et al. Transcranial random noise stimulation does not improve behavioral and neurophysiological measures in patients with subacute vegetative-unresponsive wakefulness state (VS-UWS). Front Hum Neurosci. 2017;11:524.

    Article  PubMed  Google Scholar 

  302. Straudi S, et al. Bilateral M1 anodal transcranial direct current stimulation in post traumatic chronic minimally conscious state: a pilot EEG-tDCS study. Brain Inj. 2019;33(4):490–5.

    Article  PubMed  Google Scholar 

  303. Cavinato M, et al. Behavioural and electrophysiological effects of tDCS to prefrontal cortex in patients with disorders of consciousness. Clin Neurophysiol. 2019;130(2):231–8.

    Article  PubMed  Google Scholar 

  304. Ziliotto N, et al. Soluble neural cell adhesion molecule and behavioural recovery in minimally conscious patients undergoing transcranial direct current stimulation. Clin Chim Acta. 2019;495:374–6.

    Article  CAS  PubMed  Google Scholar 

  305. Thibaut A, et al. Effect of multichannel transcranial direct current stimulation to reduce hypertonia in individuals with prolonged disorders of consciousness: a randomized controlled pilot study. Ann Phys Rehabil Med. 2019;62(6):418–25.

    Article  PubMed  Google Scholar 

  306. Martens G, et al. Behavioral and electrophysiological effects of network-based frontoparietal tDCS in patients with severe brain injury: a randomized controlled trial. NeuroImage Clin. 2020;28:102426.

    Article  PubMed  Google Scholar 

  307. Tzur R, et al. Prefrontal cortex transcranial direct-current stimulation putatively enhances electroencephalography classification resolution of binary responses in a minimal conscious state patient. Clin Neurophysiol. 2020;131(9):2148–9.

    Article  PubMed  Google Scholar 

  308. Mensen A, et al. Decreased evoked slow-activity after tDCS in disorders of consciousness. Front Syst Neurosci. 2020;14:62.

    Article  PubMed  Google Scholar 

  309. Zhang X, et al. Multi-target and multi-session transcranial direct current stimulation in patients with prolonged disorders of consciousness: a controlled study. Front Neurosci. 2021;15:641951.

    Article  PubMed  Google Scholar 

  310. Barra A, et al. Transcranial pulsed-current stimulation versus transcranial direct current stimulation in patients with disorders of consciousness: a pilot, sham-controlled cross-over double-blind study. Brain Sci. 2022;12(4):429.

    Article  PubMed  Google Scholar 

  311. Schulz KF, et al. Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA. 1995;273(5):408–12.

    Article  CAS  PubMed  Google Scholar 

  312. Giustini A, Pistarini C, Pisoni C. Traumatic and nontraumatic brain injury. Handb Clin Neurol. 2013;110:401–9.

    Article  PubMed  Google Scholar 

  313. Klooster DC, et al. Personalizing repetitive transcranial magnetic stimulation parameters for depression treatment using multimodal neuroimaging. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7(6):536–45.

    PubMed  Google Scholar 

  314. Corlier J, et al. The relationship between individual alpha peak frequency and clinical outcome with repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD). Brain Stimul. 2019;12(6):1572–8.

    Article  PubMed  Google Scholar 

  315. Zrenner B, et al. Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS. Brain Stimul. 2020;13(1):197–205.

    Article  PubMed  Google Scholar 

  316. Antonakakis M, et al. Individualized targeting and optimization of multi-channel transcranial direct current stimulation in drug-resistant epilepsy. In: 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE; 2019.

    Google Scholar 

  317. Khan A, et al. Can individually targeted and optimized multi-channel tDCS outperform standard bipolar tDCS in stimulating the primary somatosensory cortex? Brain Stimul. 2023;16(1):1–16.

    Article  PubMed  Google Scholar 

  318. Giacino JT, Kalmar K. The vegetative and minimally conscious states: a comparison of clinical features and functional outcome. J Head Trauma Rehabil. 1997;12(4):36–51.

    Article  Google Scholar 

  319. Lammi MH, et al. The minimally conscious state and recovery potential: a follow-up study 2 to 5 years after traumatic brain injury. Arch Phys Med Rehabil. 2005;86(4):746–54.

    Article  PubMed  Google Scholar 

  320. Shah SA, Schiff ND. Central thalamic deep brain stimulation for cognitive neuromodulation—a review of proposed mechanisms and investigational studies. Eur J Neurosci. 2010;32(7):1135–44.

    Article  PubMed  Google Scholar 

  321. Kondziella D, et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020;27(5):741–56.

    Article  CAS  PubMed  Google Scholar 

  322. Giacino JT, et al. Practice guideline update recommendations summary: disorders of consciousness: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Arch Phys Med Rehabil. 2018;99(9):1699–709.

    Article  PubMed  Google Scholar 

  323. Wannez S, et al. The repetition of behavioral assessments in diagnosis of disorders of consciousness. Ann Neurol. 2017;81(6):883–9.

    Article  PubMed  Google Scholar 

  324. Aubinet C, et al. Simplified Evaluation of CONsciousness Disorders (SECONDs) in individuals with severe brain injury: a validation study. Ann Phys Rehabil Med. 2021;64(5):101432.

    Article  PubMed  Google Scholar 

  325. Lutkenhoff ES, et al. Thalamic and extrathalamic mechanisms of consciousness after severe brain injury. Ann Neurol. 2015;78(1):68–76.

    Article  PubMed  Google Scholar 

  326. Lutkenhoff ES, et al. Subcortical atrophy correlates with the perturbational complexity index in patients with disorders of consciousness. Brain Stimul. 2020;13(5):1426–35.

    Article  PubMed  Google Scholar 

  327. Zheng ZS, Monti MM. Cortical and thalamic connections of the human globus pallidus: implications for disorders of consciousness. Front Neuroanat. 2022;16:960439.

    Article  CAS  PubMed  Google Scholar 

  328. Crone JS, et al. Testing proposed neuronal models of effective connectivity within the cortico-basal ganglia-thalamo-cortical loop during loss of consciousness. Cereb Cortex. 2016;27(4):2727–38.

    Google Scholar 

  329. Kakusa B, et al. Robust clinical benefit of multi-target deep brain stimulation for treatment of Gilles de la Tourette syndrome and its comorbidities. Brain Stimul. 2019;12(3):816–8.

    Article  PubMed  Google Scholar 

  330. Corlier J, et al. Multi-target repetitive transcranial magnetic stimulation (rTMS) protocol for the treatment of comorbid depression and chronic pain. Brain Stimul. 2021;14(6):1729–30.

    Article  Google Scholar 

  331. Zhu Y, et al. Multi-target ultrasound neuromodulation in the treatment of freely moving depression mice. In: 2022 IEEE International Ultrasonics Symposium (IUS). IEEE; 2022.

    Google Scholar 

  332. Schneider N, et al. Combining transcranial direct current stimulation with a motor-cognitive task: the impact on dual-task walking costs in older adults. J Neuroeng Rehabil. 2021;18(1):1–13.

    Article  Google Scholar 

  333. Ehsani F, et al. The effects of concurrent M1 anodal tDCS and physical therapy interventions on function of ankle muscles in patients with stroke: a randomized, double-blinded sham-controlled trial study. Neurol Sci. 2022;43(3):1893–901.

    Article  PubMed  Google Scholar 

  334. Kwon YH, Jang SH. The enhanced cortical activation induced by transcranial direct current stimulation during hand movements. Neurosci Lett. 2011;492(2):105–8.

    Article  CAS  PubMed  Google Scholar 

  335. Aloi D, et al. Multi-session tDCS paired with passive mobilisation increases thalamo-cortical coupling during command following. bioRxiv. 2022;2022:2022.11. 22.517479.

    Google Scholar 

  336. Pistoia F, et al. Silencing the brain may be better than stimulating it. The GABA effect. Curr Pharm Des. 2014;20(26):4154–66.

    CAS  PubMed  Google Scholar 

  337. Plaksin M, Kimmel E, Shoham S. Cell-type-selective effects of intramembrane cavitation as a unifying theoretical framework for ultrasonic neuromodulation. eNeuro. 2016;3(3):ENEURO.0136.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber R. Hopkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hopkins, A.R., Vitello, M.M., Thibaut, A., Monti, M.M. (2023). Emerging Treatment for Patients with Disorders of Consciousness: The Field of Neuromodulation. In: Schnakers, C., Laureys, S. (eds) Coma and Disorders of Consciousness. Springer, Cham. https://doi.org/10.1007/978-3-031-50563-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50563-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50562-1

  • Online ISBN: 978-3-031-50563-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics