Skip to main content

Abstract Interpretation-Based Feature Importance for Support Vector Machines

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2024)

Abstract

We study how a symbolic representation for support vector machines (SVMs) specified by means of abstract interpretation can be exploited for: (1) enhancing the interpretability of SVMs through a novel feature importance measure, called abstract feature importance (AFI), that does not depend in any way on a given dataset or the accuracy of the SVM and is very fast to compute; and (2) certifying individual fairness of SVMs and producing concrete counterexamples when this verification fails. We implemented our methodology and we empirically showed its effectiveness on SVMs based on linear and nonlinear (polynomial and radial basis function) kernels. Our experimental results prove that, independently of the accuracy of the SVM, our AFI measure correlates much strongly with stability of the SVM to feature perturbations than major feature importance measures available in machine learning software such as permutation feature importance, therefore providing better insight into the trustworthiness of SVMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For multiple categorical features, we keep track of the relation between all the categorical features and their corresponding tiers through a global lookup table.

References

  1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools, 2nd edn. Addison-Wesley Longman Publishing Co., Inc, USA (2006)

    Google Scholar 

  2. Albarghouthi, A.: Introduction to neural network verification. Found. Trends Program. Lang. 7(1–2), 1–157 (2021). https://doi.org/10.1561/2500000051

    Article  Google Scholar 

  3. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias. ProPublica 23 (2016), https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

  4. Apley, D.W., Zhu, J.: Visualizing the effects of predictor variables in black box supervised learning models. J. R. Stat. Soc. Ser. B Stat Methodol. 82(4), 1059–1086 (2020). https://doi.org/10.1111/rssb.12377

    Article  MathSciNet  Google Scholar 

  5. Bhatt, U., et al.: Explainable machine learning in deployment. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* 2020, pp. 648–657. ACM (2020). https://doi.org/10.1145/3351095.3375624

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  7. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks. In: Proceedings of 38th IEEE Symposium on Security and Privacy (S & P 2017), pp. 39–57 (2017). https://doi.org/10.1109/SP.2017.49

  8. Casalicchio, G., Molnar, C., Bischl, B.: Visualizing the feature importance for black box models. In: Machine Learning and Knowledge Discovery in Databases - Proceedings of the European Conference, ECML PKDD 2018. Lecture Notes in Computer Science, vol. 11051, pp. 655–670. Springer (2018). https://doi.org/10.1007/978-3-030-10925-7_40

  9. Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., Lopez, A.: A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408, 189–215 (2020). https://doi.org/10.1016/j.neucom.2019.10.118

    Article  Google Scholar 

  10. Chang, Y.W., Lin, C.J.: Feature ranking using linear SVM. In: Proceedings of the Workshop on the Causation and Prediction Challenge at WCCI 2008. Proceedings of Machine Learning Research, vol. 3, pp. 53–64. PMLR (2008), http://proceedings.mlr.press/v3/chang08a.html

  11. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5(2), 153–163 (2017). https://doi.org/10.1089/big.2016.0047

    Article  Google Scholar 

  12. Cousot, P.: Principles of Abstract Interpretation. MIT Press (2021)

    Google Scholar 

  13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM Symposium on Principles of Programming Languages (POPL 1977), pp. 238–252 (1977). https://doi.org/10.1145/512950.512973

  14. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press (2000). https://doi.org/10.1017/CBO9780511801389

    Book  Google Scholar 

  15. Dua, D., Graff, C.: UCI Machine Learning repository (2017). https://archive.ics.uci.edu/ml

  16. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: Innovations in Theoretical Computer Science 2012, pp. 214–226. ACM (2012). https://doi.org/10.1145/2090236.2090255

  17. Fish, B., Kun, J., Lelkes, Á.D.: A confidence-based approach for balancing fairness and accuracy. In: Proceedings of the 2016 SIAM International Conference on Data Mining, pp. 144–152. SIAM (2016). https://doi.org/10.1137/1.9781611974348.17

  18. Fisher, A., Rudin, C., Dominici, F.: All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously. J. Mach. Learn. Res. 20(177), 1–81 (2019). http://jmlr.org/papers/v20/18-760.html

  19. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). http://www.jstor.org/stable/2699986

  20. Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain Taylor1+. In: Computer Aided Verification, 21st International Conference, CAV 2009. Proceedings. Lecture Notes in Computer Science, vol. 5643, pp. 627–633. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4_47

  21. Ghosh, B., Basu, D., Meel, K.S.: Algorithmic fairness verification with graphical models. In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, pp. 9539–9548 (2022). https://doi.org/10.1609/aaai.v36i9.21187

  22. Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E.: Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation. J. Comput. Graph. Stat. 24(1), 44–65 (2015). https://doi.org/10.1080/10618600.2014.907095

    Article  MathSciNet  Google Scholar 

  23. Goodfellow, I., McDaniel, P., Papernot, N.: Making machine learning robust against adversarial inputs. Commun. ACM 61(7), 56–66 (2018). https://doi.org/10.1145/3134599

    Article  Google Scholar 

  24. Hechtlinger, Y.: Interpretation of prediction models using the input gradient. CoRR arXiv (2016). http://arxiv.org/abs/1611.07634

  25. Hooker, G., Mentch, L., Zhou, S.: Unrestricted permutation forces extrapolation: variable importance requires at least one more model, or there is no free variable importance. Stat. Comput. 31(6), 82 (2021). https://doi.org/10.1007/s11222-021-10057-z

    Article  MathSciNet  Google Scholar 

  26. Khandani, A.E., Kim, A.J., Lo, A.W.: Consumer credit-risk models via machine-learning algorithms. J. Bank. Finance 34(11), 2767–2787 (2010). https://doi.org/10.1016/j.jbankfin.2010.06.001

    Article  Google Scholar 

  27. Langenberg, P., Balda, E.R., Behboodi, A., Mathar, R.: On the robustness of support vector machines against adversarial examples. In: 13th International Conference on Signal Processing and Communication Systems, ICSPCS 2019, pp. 1–6. IEEE (2019). https://doi.org/10.1109/ICSPCS47537.2019.9008746

  28. Liu, C., Arnon, T., Lazarus, C., Strong, C.A., Barrett, C.W., Kochenderfer, M.J.: Algorithms for verifying deep neural networks. Found. Trends Optim. 4(3–4), 244–404 (2021). https://doi.org/10.1561/2400000035

    Article  Google Scholar 

  29. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pp. 4765–4774 (2017). https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

  30. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. 54(6), 1–35 (2021). https://doi.org/10.1145/3457607

    Article  Google Scholar 

  31. Messine, F.: Extentions of affine arithmetic: application to unconstrained global optimization. J. Univ. Comput. Sci. 8(11), 992–1015 (2002). https://doi.org/10.3217/jucs-008-11-0992

    Article  MathSciNet  Google Scholar 

  32. Mladenic, D., Brank, J., Grobelnik, M., Milic-Frayling, N.: Feature selection using linear classifier weights: interaction with classification models. In: SIGIR 2004: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 234–241. ACM (2004). https://doi.org/10.1145/1008992.1009034

  33. Pal, A., Ranzato, F., Urban, C., Zanella, M.: Abstract Feature Importance for SVMs (2023). https://github.com/AFI-SVM

  34. Park, S., Byun, J., Lee, J.: Privacy-preserving fair learning of support vector machine with homomorphic encryption. In: WWW 2022: The ACM Web Conference 2022, pp. 3572–3583. ACM (2022). https://doi.org/10.1145/3485447.3512252

  35. Ranzato, F., Urban, C., Zanella, M.: Fairness-aware training of decision trees by abstract interpretation. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, CIKM2021, pp. 1508–1517 (2021). https://doi.org/10.1145/3459637.3482342

  36. Ranzato, F., Zanella, M.: Robustness verification of support vector machines. In: Proceedings of the 26th International Static Analysis Symposium (SAS 2019), pp. 271–295. LNCS vol. 11822 (2019). https://doi.org/10.1007/978-3-030-32304-2_14

  37. Ranzato, F., Zanella, M.: Saver: SVM Abstract Verifier (2019). https://github.com/abstract-machine-learning/saver

  38. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144. ACM (2016). https://doi.org/10.1145/2939672.2939778

  39. Ribeiro, M.T.C.: Local Interpretable Model-agnostic Explanations (LIME) (2016). https://lime-ml.readthedocs.io

  40. Roh, Y., Lee, K., Whang, S., Suh, C.: Fr-train: a mutual information-based approach to fair and robust training. In: Proceedings of the 37th International Conference on Machine Learning (ICML 2020). Proceedings of Machine Learning Research, vol. 119, pp. 8147–8157. PMLR (2020). http://proceedings.mlr.press/v119/roh20a.html

  41. Ruoss, A., Balunovic, M., Fischer, M., Vechev, M.T.: Learning certified individually fair representations. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems (NeurIPS 2020) (2020). https://proceedings.neurips.cc/paper/2020/hash/55d491cf951b1b920900684d71419282-Abstract.html

  42. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  43. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans. Neural Networks Learn. Syst. 32(11), 4793–4813 (2021). https://doi.org/10.1109/TNNLS.2020.3027314

    Article  Google Scholar 

  44. Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness certification of neural networks. Proc. ACM Program. Lang. 4(OOPSLA), 185:1-185:30 (2020). https://doi.org/10.1145/3428253

    Article  Google Scholar 

  45. Urban, C., Miné, A.: A review of formal methods applied to machine learning. CoRR arXiv (2021). https://arxiv.org/abs/2104.02466

  46. Verma, S., Rubin, J.: Fairness definitions explained. In: Proceedings of the International Workshop on Software Fairness, FairWare@ICSE 2018, pp. 1–7. ACM (2018). https://doi.org/10.1145/3194770.3194776

  47. Xiao, H., Biggio, B., Nelson, B., Xiao, H., Eckert, C., Roli, F.: Support vector machines under adversarial label contamination. Neurocomputing 160, 53–62 (2015). https://doi.org/10.1016/j.neucom.2014.08.081

    Article  Google Scholar 

  48. Yurochkin, M., Bower, A., Sun, Y.: Training individually fair ML models with sensitive subspace robustness. In: Proceedings of the 8th International Conference on Learning Representations, ICLR 2020 (2020). https://openreview.net/forum?id=B1gdkxHFDH

Download references

Acknowledgements

Francesco Ranzato and Marco Zanella were partially funded by the Italian MIUR, under the PRIN 2017 project no. 201784YSZ5. Francesco Ranzato was partially funded by: the Italian MUR, under the PRIN 2022 PNRR project no. P2022HXNSC; Meta (formerly Facebook) Research, under a “Probability and Programming Research Award” and under a WhatsApp Research Award on “Privacy-aware Program Analysis”; by an Amazon Research Award for “AWS Automated Reasoning”. Caterina Urban was partially funded by the French PEPR Intelligence Artificielle SAIF project (ANR-23-PEIA-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ranzato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pal, A., Ranzato, F., Urban, C., Zanella, M. (2024). Abstract Interpretation-Based Feature Importance for Support Vector Machines. In: Dimitrova, R., Lahav, O., Wolff, S. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2024. Lecture Notes in Computer Science, vol 14499. Springer, Cham. https://doi.org/10.1007/978-3-031-50524-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50524-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50523-2

  • Online ISBN: 978-3-031-50524-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics