Skip to main content

Comparison of Stress Fields in a Single-Edge Crack Specimen from Phase-Field Model and Photoelasticity

  • Conference paper
  • First Online:
Advancement of Optical Methods and Fracture and Fatigue, Volume 3 (SEM 2023)

Abstract

Phase-field models (PFM) are regularized versions of the variational approach applied to fracture problems. Albeit, different numerical methods are available which can be used to solve fracture problems; the robustness of the PFM for fracture lies in their capability to handle cracks or discontinuity. Many researchers have already explored the ability of the PFMs to capture the crack initiation and propagation. In this study, as part of the validation, the crack propagation in the PFM for brittle fracture is compared with experiments for a single-edge crack specimen made of epoxy material. The isochromatic fringes generated by post-processing stress data from the PFM are compared with the experimental isochromatics to identify modelling parameters. A preliminary study of PFM with the aid of photoelasticity shows that the length scale parameter (lo) has a significant role in modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirshikesh, N.S., Annabattula, R.K.: A FEniCS implementation of the phase field method for quasi-static brittle fracture. Front. Struct. Civil Eng. 13, 380–396 (2019). https://doi.org/10.1007/s11709-018-0471-9

    Article  Google Scholar 

  2. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids. 46, 1319–1342 (1998). https://doi.org/10.1016/S0022-5096(98)00034-9

    Article  Google Scholar 

  3. Bourdin, B., Francfort, G.A., Marigo, J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

    Article  Google Scholar 

  4. Li, Y., Huang, K., Yu, H., et al.: Experimentally validated phase-field fracture modeling of epoxy resins. Compos. Struct. 279, 114806 (2022). https://doi.org/10.1016/j.compstruct.2021.114806

    Article  CAS  Google Scholar 

  5. Cavuoto, R., Lenarda, P., Misseroni, D., et al.: Crack trajectories in materials containing voids via phase-field modelling. Int. J. Solids Struct. (2022). https://doi.org/10.1016/j.ijsolstr.2022.111798

  6. Vivekanandan, A., Ramesh, K.: Study of crack interaction effects under thermal loading by digital photoelasticity and finite elements. Exp. Mech. 60, 295–316 (2020). https://doi.org/10.1007/s11340-019-00561-9

    Article  CAS  Google Scholar 

  7. Dora Pallicity, T., Ramesh, K., Mahajan, P., Vengadesan, S.: Numerical modeling of cooling stage of glass molding process assisted by CFD and measurement of residual birefringence. J. Am. Ceram. Soc. 99, 470–483 (2016). https://doi.org/10.1111/jace.14000

    Article  CAS  Google Scholar 

  8. Ambati, M., Gerasimov, T., De Lorenzis, L.: A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech. 55, 383–405 (2015). https://doi.org/10.1007/s00466-014-1109-y

    Article  Google Scholar 

  9. Hirshikesh, H., Natarajan S., Annabattula, R.K., Martínez Pañeda, E.: Phase field modelling of crack propagation in functionally graded materials. Compos. Part B Eng. 169, 239–248 (2019). https://doi.org/10.1016/j.compositesb.2019.04.003

  10. Alnaes, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., Wells, G. N.: The FEniCS Project Version 1.5. https://fenicsproject.org. Accessed 10 Jan 2023

  11. Anand, C., Natarajan, S., Ramesh, K.: Simulating isochromatic fringes from finite element results of FEniCS. Exp Tech. (2023) https://doi.org/10.1007/s40799-023-00639-z

  12. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009). https://doi.org/10.1002/nme.2579

    Article  Google Scholar 

  13. Ahrens, J., Geveci, B., Law, C.: ParaView: An End-User Tool for Large Data Visualization, Visualization Handbook. Elsevier (2005). ISBN-13: 9

    Google Scholar 

  14. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010). https://doi.org/10.1002/nme.2861

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anand, C., Natarajan, S., Ramesh, K. (2024). Comparison of Stress Fields in a Single-Edge Crack Specimen from Phase-Field Model and Photoelasticity. In: Furlong, C., Hwang, CH., Shaw, G., Berke, R., Pataky, G., Hutchens, S. (eds) Advancement of Optical Methods and Fracture and Fatigue, Volume 3. SEM 2023. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50499-0_17

Download citation

Publish with us

Policies and ethics