Skip to main content

Leveraging Model-Based Trees as Interpretable Surrogate Models for Model Distillation

  • Conference paper
  • First Online:
Artificial Intelligence. ECAI 2023 International Workshops (ECAI 2023)

Abstract

Surrogate models play a crucial role in retrospectively interpreting complex and powerful black box machine learning models via model distillation. This paper focuses on using model-based trees as surrogate models which partition the feature space into interpretable regions via decision rules. Within each region, interpretable models based on additive main effects are used to approximate the behavior of the black box model, striking for an optimal balance between interpretability and performance. Four model-based tree algorithms, namely SLIM, GUIDE, MOB, and CTree, are compared regarding their ability to generate such surrogate models. We investigate fidelity, interpretability, stability, and the algorithms’ capability to capture interaction effects through appropriate splits. Based on our comprehensive analyses, we finally provide an overview of user-specific recommendations.

J. Herbinger and S. Dandl—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In regions where only a few feature interactions are present, an additive main effect model is expected to be a good approximation.

  2. 2.

    Meaning surrogate models that partition the feature space into interpretable regions and fit an additive main effect model within each region (e.g., a linear model using only first-order feature effects).

  3. 3.

    For example, until a certain depth of the tree, a certain improvement of the objective after splitting, or a certain significance level for the parameter instability is reached.

  4. 4.

    According to [11] an algorithm for recursive partitioning is called unbiased when, under the conditions of the null hypothesis of independence between target y and features \({\textbf {x}}_{1}, ..., {\textbf {x}}_{p}\), the probability of selecting feature \({\textbf {x}}_{j}\) is 1/p for all \(j = 1, ..., p\) regardless of the measurement scales or the number of missing values.

References

  1. Alemayehu, D., Chen, Y., Markatou, M.: A comparative study of subgroup identification methods for differential treatment effect: performance metrics and recommendations. Stat. Methods Med. Res. 27(12), 3658–3678 (2018). https://doi.org/10.1177/0962280217710570

    Article  MathSciNet  Google Scholar 

  2. Bastani, O., Kim, C., Bastani, H.: Interpreting blackbox models via model extraction. arXiv preprint arXiv:1705.08504 v6 (2019). https://doi.org/10.48550/arXiv.1705.08504

  3. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees. CRC Press (1984). https://doi.org/10.1201/9781315139470

  4. Fokkema, M.: Fitting prediction rule ensembles with R package pre. J. Stat. Softw. 92(12) (2020). https://doi.org/10.18637/jss.v092.i12

  5. Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. arXiv preprint arXiv:1711.09784 (2017)

  6. Gates, A.J., Ahn, Y.Y.: The impact of random models on clustering similarity. J. Mach. Learn. Res. 18, 1–28 (2017). https://jmlr.org/papers/v18/17-039.html

  7. Hall, P., Gill, N., Kurka, M., Phan, W.: Machine learning interpretability with H2O driverless AI. H2O.ai (2017). http://docs.h2o.ai/driverless-ai/latest-stable/docs/booklets/MLIBooklet.pdf

  8. Henckaerts, R., Antonio, K., Côté, M.P.: When stakes are high: balancing accuracy and transparency with model-agnostic interpretable data-driven surrogates. Expert Syst. Appl. 202, 117230 (2022). https://doi.org/10.1016/j.eswa.2022.117230

    Article  Google Scholar 

  9. Herbinger, J., Bischl, B., Casalicchio, G.: REPID: regional effect plots with implicit interaction detection. In: International Conference on Artificial Intelligence and Statistics, pp. 10209–10233 (2022). https://proceedings.mlr.press/v151/herbinger22a/herbinger22a.pdf

  10. Herbinger, J., Dandl, S., Ewald, F.K., Loibl, S., Casalicchio, G.: Online appendix for leveraging model-based trees as interpretable surrogate models for model distillation (2023). https://github.com/slds-lmu/mbt_comparison/blob/main/Online_Appendix.pdf

  11. Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006). https://doi.org/10.1198/106186006X133933

    Article  MathSciNet  Google Scholar 

  12. Hothorn, T., Zeileis, A.: partykit: a modular toolkit for recursive partytioning in R. J. Mach. Learn. Res. 16, 3905–3909 (2015). https://www.jmlr.org/papers/v16/hothorn15a.html

  13. Hu, L., Chen, J., Nair, V.N., Sudjianto, A.: Locally interpretable models and effects based on supervised partitioning (LIME-SUP). arXiv preprint arXiv:1806.00663 (2018)

  14. Hu, L., Chen, J., Nair, V.N., Sudjianto, A.: Surrogate locally-interpretable models with supervised machine learning algorithms. arXiv preprint arXiv:2007.14528 (2020)

  15. Huber, C., Benda, N., Friede, T.: A comparison of subgroup identification methods in clinical drug development: simulation study and regulatory considerations. Pharm. Stat. 18(5), 600–626 (2019). https://doi.org/10.1002/pst.1951

    Article  Google Scholar 

  16. Laugel, T., Renard, X., Lesot, M.J., Marsala, C., Detyniecki, M.: Defining locality for surrogates in post-hoc interpretablity. Workshop on Human Interpretability for Machine Learning (WHI) - International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  17. Loh, W.Y.: Regression tress with unbiased variable selection and interaction detection. Statistica Sinica 12(2), 361–386 (2002). http://www.jstor.org/stable/24306967

  18. Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Ghani, R., et al (eds.) Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631. ACM, New York, NY, USA (2013). https://doi.org/10.1145/2487575.2487579

  19. Maratea, A., Ferone, A.: Pitfalls of local explainability in complex black-box models. In: Proceedings of the 13th International Workshop on Fuzzy Logic and Applications (WILF) (2021). https://ceur-ws.org/Vol-3074/paper13.pdf

  20. Ming, Y., Qu, H., Bertini, E.: RuleMatrix: visualizing and understanding classifiers with rules. IEEE Trans. Vis. Comput. Graph. 25(1), 342–352 (2018). https://doi.org/10.1109/TVCG.2018.2864812

    Article  Google Scholar 

  21. Molnar, C.: Interpretable Machine Learning, 2 edn. (2022). https://christophm.github.io/interpretable-ml-book

  22. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971). https://doi.org/10.1080/01621459.1971.10482356

    Article  Google Scholar 

  23. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. KDD ’16, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939778

  24. Schalk, D., Thomas, J., Bischl, B.: compboost: modular framework for component-wise boosting. JOSS 3(30), 967 (2018). https://doi.org/10.21105/joss.00967

  25. Schlosser, L., Hothorn, T., Zeileis, A.: The power of unbiased recursive partitioning: a unifying view of CTree, MOB, and GUIDE. arXiv preprint arXiv:1906.10179 (2019)

  26. Seibold, H., Zeileis, A., Hothorn, T.: Model-based recursive partitioning for subgroup analyses. Int. J. Biostat. 12(1), 45–63 (2016). https://doi.org/10.1515/ijb-2015-0032

    Article  MathSciNet  Google Scholar 

  27. Visani, G., Bagli, E., Chesani, F.: OptiLIME: optimized LIME explanations for diagnostic computer algorithms. arXiv preprint arXiv:2006.05714 v3 (2022)

  28. Zeileis, A., Hothorn, T., Hornik, K.: Model-based recursive partitioning. J. Comput. Graph. Stat. 17(2), 492–514 (2008). https://doi.org/10.1198/106186008X319331

    Article  MathSciNet  Google Scholar 

  29. Zhou, Z., Hooker, G., Wang, F.: S-LIME: stabilized-LIME for model explanation. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2429–2438. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3447548.3467274

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Casalicchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herbinger, J., Dandl, S., Ewald, F.K., Loibl, S., Casalicchio, G. (2024). Leveraging Model-Based Trees as Interpretable Surrogate Models for Model Distillation. In: Nowaczyk, S., et al. Artificial Intelligence. ECAI 2023 International Workshops. ECAI 2023. Communications in Computer and Information Science, vol 1947. Springer, Cham. https://doi.org/10.1007/978-3-031-50396-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50396-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50395-5

  • Online ISBN: 978-3-031-50396-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics