Skip to main content

DELCAS: Deep Reinforcement Learning Based GPU CaaS Packet Scheduling for Stabilizing QoE in 5G Multi-Access Edge Computing

  • Conference paper
  • First Online:
Current Trends in Web Engineering (ICWE 2023)

Abstract

Recently, Docker Container as a Service (CaaS) has been provided for multi-user services in the 5G Multi-Access Edge Computing (MEC) environment, and servers that support accelerators such as GPUs, not conventional CPU servers, are being considered. In addition, as the number of AI services is increasing and the computation power required by deep neural network model increases, offloading to edge servers is required due to insufficient computational capacity and heat problem of user devices (UE). However, there is a resource scheduling problem because all users’ packets cannot be offloaded to the edge server due to resource limitations. To address this problem, we suggest deep reinforcement learning-based GPU CaaS Packet scheduling named as Delcas for stabilizing quality of AI experience. First, we design the architecture using containerized target AI application on MEC GPUs and multiple users send video stream to MEC server. We evaluate video stream to identify the dynamic amount of resource requirement among each users using optical flow and adjust user task queue. To satisfy equal latency quality of experience, we apply lower quality first serve approach and respond hand pose estimation results to each user. Finally, we evaluate our approach and compare to conventional scheduling method in the aspect of both accuracy and latency quality.

Supported by Samsung Network (SNIC) and BK21.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, R., Wu, N., Chen, S., Han, B.: Will metaverse be NextG internet? Vision, hype, and reality. IEEE Netw. 36(5), 197–204 (2022)

    Article  Google Scholar 

  2. Huang, Z., Xiong, C., Ni, H., Wang, D., Tao, Y., Sun, T.: Standard evolution of 5G-advanced and future mobile network for extended reality and metaverse. IEEE Internet Things Mag. 6(1), 20–25 (2023)

    Article  Google Scholar 

  3. Kozinets, R.V.: Immersive netnography: a novel method for service experience research in virtual reality, augmented reality and metaverse contexts. J. Serv. Manag. 34(1), 100–125 (2023)

    Article  Google Scholar 

  4. Park, S.M., Kim, Y.G.: A metaverse: taxonomy, components, applications, and open challenges. IEEE Access 10, 4209–4251 (2022)

    Article  Google Scholar 

  5. Chakraborty, B.K., Sarma, D., Bhuyan, M.K., MacDorman, K.F.: Review of constraints on vision-based gesture recognition for human-computer interaction. IET Comput. Vis. 12(1), 3–15 (2018)

    Article  Google Scholar 

  6. O’Hagan, R., Zelinsky, A., Rougeaux, S.: Visual gesture interfaces for virtual environments. Interact. Comput. 14(3), 231–250 (2002)

    Article  Google Scholar 

  7. Oprea, S., Martinez-Gonzalez, P., Garcia-Garcia, A., Castro-Vargas, J.A., Orts-Escolano, S., Garcia-Rodriguez, J.: A visually realistic grasping system for object manipulation and interaction in virtual reality environments. Comput. Graph. 83, 77–86 (2019)

    Article  Google Scholar 

  8. Yin, R., Wang, D., Zhao, S., Lou, Z., Shen, G.: Wearable sensors-enabled human-machine interaction systems: from design to application. Adv. Funct. Mater. 31(11), 2008936 (2021)

    Article  Google Scholar 

  9. Raj, P., Saini, K., Surianarayanan, C.: Edge/Fog Computing Paradigm: The Concept, Platforms and Applications. Academic Press, Cambridge (2022)

    Google Scholar 

  10. Attaran, M.: The impact of 5G on the evolution of intelligent automation and industry digitization. J. Ambient Intell. Humaniz. Comput. 1–17 (2021)

    Google Scholar 

  11. Sukhmani, S., Sadeghi, M., Erol-Kantarci, M., El Saddik, A.: Edge caching and computing in 5G for mobile AR/VR and tactile internet. IEEE Multimed. 26(1), 21–30 (2018)

    Article  Google Scholar 

  12. Premsankar, G., Di Francesco, M., Taleb, T.: Edge computing for the internet of things: a case study. IEEE Internet Things J. 5(2), 1275–1284 (2018)

    Article  Google Scholar 

  13. Marjanović, M., Antonić, A., Žarko, I.P.: Edge computing architecture for mobile crowdsensing. IEEE Access 6, 10662–10674 (2018)

    Article  Google Scholar 

  14. Gavrilovska, L., Rakovic, V., Denkovski, D.: From cloud ran to open ran. Wirel. Pers. Commun. 113, 1523–1539 (2020)

    Article  Google Scholar 

  15. Bonati, L., Polese, M., DOro, S., Basagni, S., Melodia, T.: Open, programmable, and virtualized 5G networks: state-of-the-art and the road ahead. Comput. Netw. 182, 107516 (2020)

    Google Scholar 

  16. Iqbal, S., Hamamreh, J.M.: A comprehensive tutorial on how to practically build and deploy 5G networks using open-source software and general-purpose, off-the-shelf hardware. RS Open J. Innov. Commun. Tech 2(6), 1–28 (2021)

    Google Scholar 

  17. Gallipeau, D., Kudrle, S.: Microservices: building blocks to new workflows and virtualization. SMPTE Motion Imaging J. 127(4), 21–31 (2018)

    Article  Google Scholar 

  18. Goniwada, S.R., Goniwada, S.R.: Containerization and virtualization. Cloud Native Architecture and Design: A Handbook for Modern Day Architecture and Design with Enterprise-Grade Examples, pp. 573–617 (2022)

    Google Scholar 

  19. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  Google Scholar 

  20. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI’81: 7th International Joint Conference on Artificial Intelligence, vol. 2, pp. 674–679 (1981)

    Google Scholar 

  21. Xue, F., Hai, Q., Dong, T., Cui, Z., Gong, Y.: A deep reinforcement learning based hybrid algorithm for efficient resource scheduling in edge computing environment. Inf. Sci. 608, 362–374 (2022)

    Article  Google Scholar 

  22. Yang, T., Hu, Y., Gursoy, M.C., Schmeink, A., Mathar, R.: Deep reinforcement learning based resource allocation in low latency edge computing networks. In: 2018 15th International Symposium on Wireless Communication Systems (ISWCS), pp. 1–5. IEEE (2018)

    Google Scholar 

  23. Zhou, Y., Habermann, M., Xu, W., Habibie, I., Theobalt, C., Xu, F.: Monocular real-time hand shape and motion capture using multi-modal data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5346–5355 (2020)

    Google Scholar 

  24. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) Image Analysis. SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

  25. Lee, K., Youn, C.H.: Reinforcement learning based adaptive resource allocation scheme for multi-user augmented reality service. In: 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), pp. 1989–1994 (2022). https://doi.org/10.1109/ICTC55196.2022.9952934

  26. Lee, K., Youn, C.H.: Reindear: reinforcement learning agent for dynamic system control in edge-assisted augmented reality service. In: 2020 International Conference on Information and Communication Technology Convergence (ICTC), pp. 949–954. IEEE (2020)

    Google Scholar 

  27. Merkel, D., et al.: Docker: lightweight Linux containers for consistent development and deployment. Linux j 239(2), 2 (2014)

    Google Scholar 

  28. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  29. Zhang, C., Zhou, G., Li, J., Chang, F., Ding, K., Ma, D.: A multi-access edge computing enabled framework for the construction of a knowledge-sharing intelligent machine tool swarm in industry 4.0. J. Manuf. Syst. 66, 56–70 (2023)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by Samsung Electronics Co., Ltd and in part by BK21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changha Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, C., Lee, K., Cho, G., Youn, CH. (2024). DELCAS: Deep Reinforcement Learning Based GPU CaaS Packet Scheduling for Stabilizing QoE in 5G Multi-Access Edge Computing. In: Casteleyn, S., Mikkonen, T., García Simón, A., Ko, IY., Loseto, G. (eds) Current Trends in Web Engineering. ICWE 2023. Communications in Computer and Information Science, vol 1898. Springer, Cham. https://doi.org/10.1007/978-3-031-50385-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50385-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50384-9

  • Online ISBN: 978-3-031-50385-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics