Skip to main content

TiME: Time-Sensitive Multihop Data Transmission in Software-Defined Edge Networks for IoT

  • Conference paper
  • First Online:
Current Trends in Web Engineering (ICWE 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1898))

Included in the following conference series:

Abstract

This work addresses the problem of optimal data transmission in a multi-hop edge network. In edge networks, IoT devices need to transmit data to the local processing units. However, having a short-range communication capacity, it is hard for IoT devices to transmit the data to the concerned processing edge devices. Hence, they mostly rely on multi-hop communication. There is no such scheme for multi-hop communication at the edge while ensuring timeliness. We envision that software-defined networking can help in solving the aforementioned problem. Hence, we proposed a software-defined edge architecture and designed a game theoretic model for optimal multi-hop data transmission. We use a dynamic coalition game to identify the optimal paths for data transmission in edge networks for IoT. The performance of the proposed scheme is also evaluated and compared with the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel Hamid, S., Hassanein, H.S., Takahara, G., Abdel Hamid, S., Hassanein, H.S., Takahara, G.: Introduction to wireless multi-hop networks. In: Routing for Wireless Multi-Hop Networks. SBCS, pp. 1–9. Springer, New York, NY (2013). https://doi.org/10.1007/978-1-4614-6357-3_1

  2. Bera, S., Misra, S., Jamalipour, A.: Flowstat: adaptive flow-rule placement for per-flow statistics in SDN. IEEE J. Sel. Areas Commun. 37(3), 530–539 (2019). https://doi.org/10.1109/JSAC.2019.2894239

    Article  Google Scholar 

  3. Bera, S., Misra, S., Obaidat, M.S.: Mobi-flow: mobility-aware adaptive flow-rule placement in software-defined access network. IEEE Trans. Mob. Comput. 18(8), 1831–1842 (2019). https://doi.org/10.1109/TMC.2018.2868932

    Article  Google Scholar 

  4. Bera, S., Misra, S., Vasilakos, A.V.: Software-defined networking for internet of things: a survey. IEEE Internet Things J. 4(6), 1994–2008 (2017). https://doi.org/10.1109/JIOT.2017.2746186

    Article  Google Scholar 

  5. Bouzidi, E.H., Outtagarts, A., Langar, R.: Deep reinforcement learning application for network latency management in software defined networks. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2019)

    Google Scholar 

  6. Braun, T., Kassler, A., Kihl, M., Rakocevic, V., Siris, V., Heijenk, G.: Multihop wireless networks. Traffic and QoS Management in Wireless Multimedia Networks: COST 290 Final Report, pp. 201–265 (2009)

    Google Scholar 

  7. Chen, Y.W., Lin, Y.H.: Study of rule placement schemes for minimizing TCAM space and effective bandwidth utilization in SDN. In: 2018 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), pp. 21–27. IEEE (2018)

    Google Scholar 

  8. Fedor, S., Collier, M.: On the problem of energy efficiency of multi-hop vs one-hop routing in wireless sensor networks. In: 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW’07), vol. 2, pp. 380–385 (2007). https://doi.org/10.1109/AINAW.2007.272

  9. Kaul, S., Gruteser, M., Rai, V., Kenney, J.: Minimizing age of information in vehicular networks. In: Proceedings of the 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 350–358 (2011). https://doi.org/10.1109/SAHCN.2011.5984917

  10. Kaul, S., Yates, R., Gruteser, M.: Real-time status: how often should one update? In: Proceedings of IEEE INFOCOM, pp. 2731–2735 (2012). https://doi.org/10.1109/INFCOM.2012.6195689

  11. Khoobbakht, M., Noei, M., Parvizimosaed, M.: Hybrid flow-rule placement method of proactive and reactive in SDNs. In: Proceedings of the 11th International Conference on Computer Engineering and Knowledge (ICCKE), pp. 121–127 (2021). https://doi.org/10.1109/ICCKE54056.2021.9721507

  12. Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015). https://doi.org/10.1109/JPROC.2014.2371999

    Article  Google Scholar 

  13. Kyung, Y.: Mobility-aware prioritized flow rule placement in software-defined access networks. In: 2021 International Conference on Information Networking (ICOIN), pp. 59–61 (2021). https://doi.org/10.1109/ICOIN50884.2021.9333854

  14. Lu, M., Deng, W., Shi, Y.: TF-Idletimeout: improving efficiency of TCAM in SDN by dynamically adjusting flow entry lifecycle. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 002681–002686. IEEE (2016)

    Google Scholar 

  15. Mimidis-Kentis, A., Pilimon, A., Soler, J., Berger, M., Ruepp, S.: A novel algorithm for flow-rule placement in SDN switches. In: Proceedings of the 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), pp. 1–9 (2018). https://doi.org/10.1109/NETSOFT.2018.8459979

  16. Misra, S., Saha, R., Ahmed, N.: Health-flow: criticality-aware flow control for SDN-based healthcare IoT. In: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6 (2020). https://doi.org/10.1109/GLOBECOM42002.2020.9348058

  17. Mondal, A., Misra, S.: Flowman: QoS-aware dynamic data flow management in software-defined networks. IEEE J. Sel. Areas Commun. 38(7), 1366–1373 (2020)

    Article  Google Scholar 

  18. Mondal, A., Misra, S., Chakraborty, A.: TROD: throughput-optimal dynamic data traffic management in software-defined networks. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2018)

    Google Scholar 

  19. Nguyen, T.G., Phan, T.V., Hoang, D.T., Nguyen, H.H., Le, D.T.: Deepplace: deep reinforcement learning for adaptive flow rule placement in software-defined IoT networks. Comput. Commun. 181, 156–163 (2022). https://doi.org/10.1016/j.comcom.2021.10.006

    Article  Google Scholar 

  20. Panda, A., Samal, S.S., Turuk, A.K., Panda, A., Venkatesh, V.C.: Dynamic hard timeout based flow table management in openflow enabled SDN. In: 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), pp. 1–6. IEEE (2019)

    Google Scholar 

  21. Saha, N., Bera, S., Misra, S.: Sway: traffic-aware QoS routing in software-defined IoT. IEEE Trans. Emerg. Top. Comput. 9(1), 390–401 (2018)

    Article  Google Scholar 

  22. Saha, N., Misra, S., Bera, S.: QoS-aware adaptive flow-rule aggregation in software-defined IoT. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 206–212. IEEE (2018)

    Google Scholar 

  23. Saha, N., Misra, S., Bera, S.: Q-flag: qos-aware flow-rule aggregation in software-defined IoT networks. IEEE Internet Things J. 9(7), 4899–4906 (2022). https://doi.org/10.1109/JIOT.2021.3113777

    Article  Google Scholar 

  24. Talak, R., Karaman, S., Modiano, E.: Optimizing information freshness in wireless networks under general interference constraints. IEEE/ACM Trans. Netw. 28(1), 15–28 (2020). https://doi.org/10.1109/TNET.2019.2946481

    Article  Google Scholar 

  25. Zeng, K., Lou, W., Li, M.: Multihop Wireless Networks: Opportunistic Routing, vol. 25. John Wiley & Sons, Hoboken (2011)

    Google Scholar 

  26. Zhang, S.Q., et al.: TCAM space-efficient routing in a software defined network. Comput. Netw. 125, 26–40 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the IIT Indore Young Faculty Research Seed Grant (YFRSG) Scheme (Grant No: IITI/YFRSG/2022-23/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simran Gurung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurung, S., Mondal, A. (2024). TiME: Time-Sensitive Multihop Data Transmission in Software-Defined Edge Networks for IoT. In: Casteleyn, S., Mikkonen, T., García Simón, A., Ko, IY., Loseto, G. (eds) Current Trends in Web Engineering. ICWE 2023. Communications in Computer and Information Science, vol 1898. Springer, Cham. https://doi.org/10.1007/978-3-031-50385-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50385-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50384-9

  • Online ISBN: 978-3-031-50385-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics