Skip to main content

SLO-Aware DL Job Scheduling for Efficient FPGA-GPU Edge Cloud Computing

  • Conference paper
  • First Online:
Current Trends in Web Engineering (ICWE 2023)

Abstract

Deep learning applications have become increasingly popular in recent years, leading to the development of specialized hardware accelerators such as FPGAs and GPUs. These accelerators provide significant performance gains over traditional CPUs, but their efficient utilization requires careful scheduling configuration for given DL requests. In this paper, we propose a SLO-aware DL job scheduling model for efficient FPGA-GPU edge cloud computing. The proposed model takes into account variant service-level objectives of the DL job and periodically updates the accelerator configuration of DL processing while minimizing computation costs accordingly. We first analyze the impact of various DL-related parameters on the performance of FPGA-GPU computing. We then propose a novel scheduling algorithm that considers the time-variant latency SLO constraints and periodically updates the scheduling configuration. We evaluated our scheduler using several DL workloads on a FPGA-GPU cluster. Our results demonstrated that our scheduler achieves improvements in terms of both energy consumption and SLO compliance compared to the traditional DL scheduling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NVIDIA multi-process service. https://docs.nvidia.com/deploy/mps/index.html

  2. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

  3. Brito, T., Queiroz, J., Piardi, L., Fernandes, L.A., Lima, J., Leitão, P.: A machine learning approach for collaborative robot smart manufacturing inspection for quality control systems. Procedia Manuf. 51, 11–18 (2020)

    Article  Google Scholar 

  4. Cao, H., et al.: Swin-UNet: UNet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) ECCV 2022. LNCS, vol. 13803, pp. 205–218. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25066-8_9

    Chapter  Google Scholar 

  5. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: DeepDriving: learning affordance for direct perception in autonomous driving. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2722–2730 (2015)

    Google Scholar 

  6. Choi, S., Lee, S., Kim, Y., Park, J., Kwon, Y., and Huh, J.: Multi-model machine learning inference serving with GPU spatial partitioning. arXiv preprint arXiv:2109.01611 (2021)

  7. Codevilla, F., Müller, M., López, A., Koltun, V., Dosovitskiy, A.: End-to-end driving via conditional imitation learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4693–4700. IEEE (2018)

    Google Scholar 

  8. Crankshaw, D., Wang, X., Zhou, G., Franklin, M.J., Gonzalez, J.E., Stoica, I.: Clipper: a \(\{\)low-latency\(\}\) online prediction serving system. In: 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2017), pp. 613–627 (2017)

    Google Scholar 

  9. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  10. Dhakal, A., Kulkarni, S.G., Ramakrishnan, K.: GSLICE: controlled spatial sharing of GPUs for a scalable inference platform. In: Proceedings of the 11th ACM Symposium on Cloud Computing, pp. 492–506 (2020)

    Google Scholar 

  11. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  12. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  13. Galassi, A., Lippi, M., Torroni, P.: Attention in natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 32(10), 4291–4308 (2020)

    Article  Google Scholar 

  14. Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing. ACM Trans. Comput. Healthc. (HEALTH) 3(1), 1–23 (2021)

    Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  17. Jain, P., et al.: Dynamic space-time scheduling for GPU inference. arXiv preprint arXiv:1901.00041 (2018)

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  19. Kim, W.-J., Youn, C.-H.: Cooperative scheduling schemes for explainable DNN acceleration in satellite image analysis and retraining. IEEE Trans. Parallel Distrib. Syst. 33(7), 1605–1618 (2021)

    Article  Google Scholar 

  20. Litjens, G., et al.: State-of-the-art deep learning in cardiovascular image analysis. JACC: Cardiovas. Imaging 12(8 Part 1), 1549–1565 (2019)

    Google Scholar 

  21. Ouyang, Z., Niu, J., Liu, Y., Guizani, M.: Deep CNN-based real-time traffic light detector for self-driving vehicles. IEEE Trans. Mob. Comput. 19(2), 300–313 (2019)

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Shen, H., et al.: Nexus: a GPU cluster engine for accelerating DNN-based video analysis. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp. 322–337 (2019)

    Google Scholar 

  24. Singh, A., Sengupta, S., Lakshminarayanan, V.: Explainable deep learning models in medical image analysis. J. Imaging 6(6), 52 (2020)

    Article  Google Scholar 

  25. Wen, L., Gao, L., Li, X.: A new deep transfer learning based on sparse auto-encoder for fault diagnosis. IEEE Trans. Syst. Man Cybern.: Syst. 49(1), 136–144 (2017)

    Article  Google Scholar 

  26. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2174–2182 (2017)

    Google Scholar 

  27. Yu, P., Chowdhury, M.: Salus: fine-grained GPU sharing primitives for deep learning applications. arXiv preprint arXiv:1902.04610 (2019)

Download references

Acknowledgements

This work is supported by Samsung Electronics Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taewoo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, T., Jeon, M., Lee, C., Kim, S., AL-Hazemi, F., Youn, CH. (2024). SLO-Aware DL Job Scheduling for Efficient FPGA-GPU Edge Cloud Computing. In: Casteleyn, S., Mikkonen, T., García Simón, A., Ko, IY., Loseto, G. (eds) Current Trends in Web Engineering. ICWE 2023. Communications in Computer and Information Science, vol 1898. Springer, Cham. https://doi.org/10.1007/978-3-031-50385-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50385-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-50384-9

  • Online ISBN: 978-3-031-50385-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics