Skip to main content

Silk Biomaterials in Wound Healing: Navigating Challenges and Charting the Future of Regenerative Medicine

  • Conference paper
  • First Online:
TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 989 Accesses

Abstract

Wound healing and skin regeneration are complex processes crucial for human health, and silk biomaterials have emerged as promising tools in these fields. This article explores recent research, challenges, and prospects in the use of silk-based solutions for wound healing and regenerative medicine. Recent studies highlight silk biomaterials’ potential in promoting wound healing and skin regeneration through materials like hydrogels, dressings, and artificial skin grafts. Silk's unique ability to modulate immune responses balances inflammation and tissue repair, making it invaluable in wound care. However, challenges such as regulatory compliance, infection management, and immunomodulation must be addressed. Bridging the gap between research and clinical application demands rigorous testing and personalized wound care approaches. The future of silk biomaterials in wound healing holds promise, with innovations like advanced formulations, bioactive additives, and immunomodulation on the horizon. Regulatory streamlining will make silk-based solutions globally accessible, revolutionizing wound care and advancing regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jonathan EM, Ohifuemen AO, Jacob JN, Isaac AY, Ifijen IH (2023) Polymeric biodegradable biomaterials for tissue bioengineering and bone rejuvenation. In: TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_25

  2. Mokobia KE, Ifijen IH, Ikhuoria EU (2023) ZnO-NPs-coated implants with osteogenic properties for enhanced osseointegration. In: TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_27

  3. Ifijen IH, Ikhuoria EU, Omorogbe SO et al (2023) Chemical, plant and microbial mediated synthesis of tin oxide nanoparticles: antimicrobial and anticancer potency. Braz J Chem Eng. https://doi.org/10.1007/s43153-023-00315-0

  4. Ifijen IH, Atoe B, Ekun RO et al (2023) Treatments of mycobacterium tuberculosis and toxoplasma gondii with selenium nanoparticles. BioNanoScience 13:249–277. https://doi.org/10.1007/s12668-023-01059-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ifijen IH, Maliki M, Udokpoh NU, Odiachi IJ, Atoe B (2023) A concise review of the antibacterial action of gold nanoparticles against various bacteria. In: TMS 2023 152nd annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_58

  6. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Google Scholar 

  7. Kundu SC, Kundu B, Talukdar S, Bano S, Nayak S, Kundu J, Ghosh AK (2012) Invited review nonmulberry silk biopolymers. Biopolymers 97:455–467

    Google Scholar 

  8. Widhe M, Johansson J, Hedhammar M, Rising A (2012) Current progress and limitations of spider silk for biomedical applications. Biopolymers 97:468–478

    Article  PubMed  Google Scholar 

  9. Holland C, Numata K, Rnjak-Kovacina J, Seib FP (2019) The biomedical use of silk: past, present, future. Adv Healthcare Mater 8:e1800465

    Article  Google Scholar 

  10. Rockwood DN, Preda RC, Yucel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6:1612–1631

    Article  PubMed  Google Scholar 

  11. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528

    Article  PubMed  Google Scholar 

  12. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470

    Article  PubMed  Google Scholar 

  13. Lujerdean C, Baci GM, Cucu AA, Dezmirean DS (2022) The contribution of silk fibroin in biomedical engineering. Insects 13(3):286. https://doi.org/10.3390/insects13030286

    Article  PubMed  PubMed Central  Google Scholar 

  14. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275(51):40517–40528. https://doi.org/10.1074/jbc.M006897200

    Article  PubMed  Google Scholar 

  15. Bandyopadhyay A, Chowdhury SK, Dey S et al (2019) Silk: a promising biomaterial opening new vistas towards affordable healthcare solutions. J Ind Inst Sci 99:445–487. https://doi.org/10.1007/s41745-019-00114-y

    Article  Google Scholar 

  16. Murphy AR, Kaplan DL (2009) Biomedical applications of chemically-modified silk fibroin. J Mater Chem 19(36):6443–6450. https://doi.org/10.1039/b905802h

    Article  PubMed  PubMed Central  Google Scholar 

  17. Asakura T, Ashida J, Yamane T, Kameda T, Nakazawa Y, Ohgo K, Komatsu K (2001) A repeated β-turn structure in Poly(Ala-Gly) as a model for silk I of Bombyx mori silk fibroin studied with two-dimensional spin-diffusion NMR under off magic angle spinning and rotational echo double resonance. J Mol Biol 306(2):291–305. https://doi.org/10.1006/jmbi.2000.4394

    Article  PubMed  Google Scholar 

  18. Silva AS, Costa EC, Reis S, Spencer C, Calhelha RC, Miguel SP, Coutinho P (2022) Silk sericin: a promising sustainable biomaterial for biomedical and pharmaceutical applications. Polymers (Basel) 14(22):4931. https://doi.org/10.3390/polym14224931

  19. Seo SJ, Das G, Shin HS, Patra JK (2023) Silk sericin protein materials: characteristics and applications in food-sector industries. Int J Mol Sci 24(5):4951. https://doi.org/10.3390/ijms24054951

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Wei Y, Zhang G, Zhang Y (2023) Sericin from fibroin-deficient silkworms served as a promising resource for biomedicine. Polymers 15(15):2941. https://doi.org/10.3390/polym15132941

    Article  PubMed  PubMed Central  Google Scholar 

  21. Humenik M, Scheibel T, Smith A (2011) Spider silk: Understanding the structure-function relationship of a natural fiber. Prog Mol Biol Transl Sci 103:131–185. https://doi.org/10.1016/B978-0-12-415906-8.00007-8

    Article  PubMed  Google Scholar 

  22. Kiseleva AP, Krivoshapkin PV, Krivoshapkina EF (2020) Recent advances in development of functional spider silk-based hybrid materials. Front Chem 8:554. https://doi.org/10.3389/fchem.2020.00554

    Article  PubMed  PubMed Central  Google Scholar 

  23. DeSimone E, Aigner TB, Humenik M, Lang G, Scheibel T (2020) Aqueous electrospinning of recombinant spider silk proteins. Mater Sci Eng, C 106:110145. https://doi.org/10.1016/j.msec.2019.110145

    Article  Google Scholar 

  24. Kumari S, Lang G, DeSimone E, Spengler C, Trossmann VT, Lücker S, Scheibel T (2020) Engineered spider silk-based 2D and 3D materials prevent microbial infestation. Mater Today 41:21–33

    Google Scholar 

  25. Huang W, Rollett A, Kaplan DL (2015) Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. Expert Opin Drug Deliv 12(5):779–791. https://doi.org/10.1517/17425247.2015.989830

    Article  PubMed  Google Scholar 

  26. Chambre L, Martín-Moldes Z, Parker RN, Kaplan DL (2020) Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Adv Drug Deliv Rev 160:186–198. https://doi.org/10.1016/j.addr.2020.10.008

    Article  PubMed  PubMed Central  Google Scholar 

  27. Madden PW, Klyubin I, Ahearne MJ (2020) Silk fibroin safety in the eye: a review that highlights a concern. BMJ Open Ophthalmol 5(1):e000510. https://doi.org/10.1136/bmjophth-2020-000510

    Article  PubMed  PubMed Central  Google Scholar 

  28. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416. https://doi.org/10.1016/s0142-9612(02)00353-8

  29. Kumar JP, Bhardwaj N, Mandal BB (2016) Cross-linked silk sericin–gelatin 2D and 3D matrices for prospective tissue engineering applications. RSC Adv 6:105125–105136. https://doi.org/10.1039/C6RA18654H

    Article  Google Scholar 

  30. Dahlke H, Dociu N, Thurau K (1980) Thrombogenicity of different suture materials as revealed by scanning electron microscopy. J Biomed Mater Res 14:251–268. https://doi.org/10.1002/jbm.820140307

    Article  PubMed  Google Scholar 

  31. Martinez-Mora C, Mrowiec A, Garcia-Vizcaino EM, Alcaraz A, Cenis JL, Nicolas FJ (2012) Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun. PLoS ONE 7:e42271. https://doi.org/10.1371/journal.pone.0042271

    Article  PubMed  PubMed Central  Google Scholar 

  32. Periayah MH, Halim AS, Mat Saad AZ (2017) Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int J Hematol Oncol Stem Cell Res 11(4):319–327

    PubMed  PubMed Central  Google Scholar 

  33. Schultz GS, Chin GA, Moldawer L et al (2011) Principles of wound healing. In: Fitridge R, Thompson M (eds) Mechanisms of vascular disease: a reference book for vascular specialists [Internet]. University of Adelaide Press, Adelaide (AU). Chapter 23. https://www.ncbi.nlm.nih.gov/books/NBK534261/

  34. Koivisto L, Heino J, Häkkinen L, Larjava H (2014) Integrins in wound healing. Adv Wound Care (New Rochelle) 3(12):762–783. https://doi.org/10.1089/wound.2013.0436

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wei F, Liu S, Chen M, Tian G, Zha K, Yang Z, Guo Q (2021) Host response to biomaterials for cartilage tissue engineering: key to remodeling. Front Bioeng Biotechnol 9:664592. https://doi.org/10.3389/fbioe.2021.664592

  36. Diller RB, Tabor AJ (2022) The role of the extracellular matrix (ECM) in wound healing: a review. Biomimetics (Basel) 7(3):87. https://doi.org/10.3390/biomimetics7030087

    Article  PubMed  Google Scholar 

  37. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review advances in wound care (New Rochelle) 3(7):445–464. https://doi.org/10.1089/wound.2013.0473

  38. Gil ES, Panilaitis B, Bellas E, Kaplan DL (2013) Functionalized silk biomaterials for wound healing. Adv Healthcare Mater 2:206–217. https://doi.org/10.1002/adhm.201200192

    Article  Google Scholar 

  39. Umuhoza D, Yang F, Long D, Hao Z, Dai J, Zhao A (2020) Strategies for tuning the biodegradation of silk fibroin-based materials for tissue engineering applications. ACS Biomater Sci Eng 6(3):1290–1310. https://doi.org/10.1021/acsbiomaterials.9b01781

    Article  PubMed  Google Scholar 

  40. Sengupta S, Park SH, Seok GE, Patel A, Numata K, Lu CL, Kaplan DL (2010) Quantifying osteogenic cell degradation of silk biomaterials. Biomacromol 11(12):3592–3599. https://doi.org/10.1021/bm101054q

    Article  Google Scholar 

  41. Mazurek Ł, Szudzik M, Rybka M, Konop M (2022) Silk fibroin biomaterials and their beneficial role in skin wound healing. Biomolecules 12(12):1852. https://doi.org/10.3390/biom12121852

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shu W, Wang Y, Zhang X, Li C, Le H, Chang F (2021) Functional hydrogel dressings for treatment of burn wounds. Front Bioeng Biotechnol 9:788461. https://doi.org/10.3389/fbioe.2021.788461

    Article  PubMed  PubMed Central  Google Scholar 

  43. Muire PJ, Thompson MA, Christy RJ, Natesan S (2022) Advances in immunomodulation and immune engineering approaches to improve healing of extremity wounds. Int J Mol Sci 23:4074. https://doi.org/10.3390/ijms23084074

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chouhan D, Lohe T, Samudrala PK, Mandal BB (2018) In situ forming injectable silk fibroin hydrogel promotes skin regeneration in full thickness burn wounds. Adv Healthcare Mater 7(24):1801092. https://doi.org/10.1002/adhm.201801092

    Article  Google Scholar 

  45. Indrakumar S, Joshi A, Dash TK, Mishra V, Tandon B, Chatterjee K (2023) Photopolymerized silk fibroin gel for advanced burn wound care. Int J Biol Macromol 233:123569. https://doi.org/10.1016/j.ijbiomac.2023.123569

    Article  PubMed  Google Scholar 

  46. Ju HW, Lee OJ, Moon BM et al (2014) Silk fibroin based hydrogel for regeneration of burn induced wounds. Tissue Eng Regen Med 11:203–210. https://doi.org/10.1007/s13770-014-0010-2

    Article  Google Scholar 

  47. Przekora A (2020) A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro? Cells 9(7):1622. https://doi.org/10.3390/cells9071622

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wendt H, Hillmer A, Reimers K, Kuhbier JW, Scha¨fer-Nolte F et al (2011) Artificial skin—culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PLoS ONE 6(7):e21833. https://doi.org/10.1371/journal.pone.0021833

  49. Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK (2021) A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 13:1105. https://doi.org/10.3390/polym13071105

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhazuagbe H. Ifijen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Atoe, B., Ifijen, I.H., Okiemute, I.P., Emmanuel, O.I., Maliki, M. (2024). Silk Biomaterials in Wound Healing: Navigating Challenges and Charting the Future of Regenerative Medicine. In: TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50349-8_78

Download citation

Publish with us

Policies and ethics