Skip to main content

Correlation Between Corrosion Rate and Electrochemical Parameters of Anode Process on the Metallic Electrode in Molten Oxyfluorides

  • Conference paper
  • First Online:
Light Metals 2024 (TMS 2024)

Abstract

Using metallic anodes enables oxygen evolution during the aluminum reduction in electrolysis cells with vertical electrodes. Although they are considered non-consumable compared to carbon ones, they tend to corrode in molten fluoride media, and the corrosion products end up in aluminum as impurities. The big challenge for the industry is finding the best conditions (anode and bath composition, temperature, and current density) that provide the lowest corrosion rate. The most reliable way to characterize the corrosion rate is to perform an electrolysis test and determine the mass of anode components in the produced aluminum. This method is highly time- and resource-demanding. This paper investigates the connection between the electrochemical parameters of the anode process, which can be measured in minutes, and the results of long-term electrolysis tests. Several parameters, such as exchange current density on clean and oxidized surfaces, were studied in the low-temperature KF-NaF-AlF3-Al2O3 melt at 800 °C. A linear dependency between exchange currents and corrosion rate was found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Du, E. Gao, C. Zhang et al. Nat Commun 14, 253 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. Suzdaltsev and Y. Zaikov. J. Electrochem. Soc. 170 056506 (2023).

    Article  CAS  Google Scholar 

  3. A. A. Polyakov et al. J. Electrochem. Soc. 169 053502 (2022).

    Article  CAS  Google Scholar 

  4. S. K. Padamata et al. J. Electrochem. Soc. 170 073501 (2023).

    Google Scholar 

  5. A. S. Yasinskiy, S. K. Padamata, P. V. Polyakov, and A. V. Shabanov, Non-ferrous Metals., 48, 15 (2020).

    Article  Google Scholar 

  6. Y. He, K. Zhou, Y. Zhang, H. Xiong, and L. Zhang, J. Mater. Chem. A, 9, 25272 (2021).

    Article  CAS  Google Scholar 

  7. S. Feng, et al. Chemical Engineering Journal, 472, 145010 (2023).

    Article  CAS  Google Scholar 

  8. Z. Zhang, J. Xu. Int J Appl Ceram Technol., 20: 329–340 (2023).

    Article  CAS  Google Scholar 

  9. S. Yaroshevskyi, et al., Open Ceramics, 16, 100458 (2023).

    Article  CAS  Google Scholar 

  10. Y.-Q. Tao et al. Materials, 15, 5377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. W. Wei et. al. Journal of Materials Science & Technology, 107, 216-226 (2022)

    Article  CAS  Google Scholar 

  12. S. Jucken, B. Tougas, B. Davis, D. Guay, and L. Roué, Metall. Mater. Trans. B, 50, 3103 (2019).

    Article  CAS  Google Scholar 

  13. E. Gavrilova, G. Goupil, B. Davis, D. Guay, and L. Roué, Corros. Sci., 101, 105 (2015).

    Article  CAS  Google Scholar 

  14. V. Jalilvand, et al. Surface and Coatings Technology, 441, 128576 (2022).

    Article  CAS  Google Scholar 

  15. I. Gallino, M. E. Kassner, and R. Busch, Corros. Sci., 63, 293 (2012).

    Article  CAS  Google Scholar 

  16. G. Gunnarsson, G. Óskarsdóttir, S. Frostason, and J. H. Magnusson, ed. C. Chesonis “Light Metals.” The Minerals, Metals & Materials Series. (Springer, Cham, Berlin) (2019).

    Google Scholar 

  17. S. K. Padamata, A. Yasinskiy, A. Shabanov, T. Bermeshev, Y. Yang, Z. Wang, D. Cao, and P. Polyakov, Trans. Nonferrous Met. Soc. China, 32, 354 (2022).

    Article  CAS  Google Scholar 

  18. K.-C. Zhou et al. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 31 (11), 3010–3023 (2021).

    Google Scholar 

  19. S. K. Padamata, A. Yasinskiy, and P. Polyakov, Trans. Nonferrous Met. Soc. China, 30, 1419 (2020).

    Article  CAS  Google Scholar 

  20. T. R. Beck, C. M. MacRae, and N. C. Wilson, Metall. Mater. Trans. B, 42, 807 (2011).

    Article  CAS  Google Scholar 

  21. A. P. Apisarov et al., Russ. J. Electrochem., 46, 633 (2010).

    Article  CAS  Google Scholar 

  22. H. Andrews, S. Phongikaroon, J. Electrochem. Soc. 165 E412 (2018).

    Article  CAS  Google Scholar 

  23. G. Saevarsdottir et al., J. Electrochem. Soc. 170 072508 (2023).

    Google Scholar 

Download references

Acknowledgements

This work was financed by the Ministry of Economy, Industry, Climate Protection, and Energy of the State of North Rhine-Westphalia within the project ‘CO2-free Aluminium Production’ with the Grant EFO0113D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Yasinskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yasinskiy, A. et al. (2024). Correlation Between Corrosion Rate and Electrochemical Parameters of Anode Process on the Metallic Electrode in Molten Oxyfluorides. In: Wagstaff, S. (eds) Light Metals 2024. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50308-5_76

Download citation

Publish with us

Policies and ethics