Skip to main content

Estimation of the Spatial Alumina Concentration of an Aluminium Smelting Cell Using a Huber Function-Based Kalman Filter

  • Conference paper
  • First Online:
Light Metals 2024 (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 1015 Accesses

Abstract

The distribution of alumina concentration is important for optimal cell operations in the aluminium smelting process. However, continuous real-time measurement of alumina concentration is generally infeasible due to the hostile environment in the cell. As such a soft sensor is often needed to estimate the alumina concentration from readily available measurements (e.g., cell voltage and line current). However, these approaches often suffer from poor estimation accuracy when the model error increases (e.g., during the anode effect). To address these problems, this work develops a robust Kalman filter to estimate the spatial alumina concentration using voltage measurements and individual anode current data. The proposed method utilises a Huber function to deal with model errors, resulting in more robust estimations. The effectiveness of this approach is validated through experimental data, demonstrating its potential for improving spatial alumina concentration estimation in the aluminium smelting process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Depree, N., Düssel, R., Patel, P., & Reek, T. (2016). The ‘Virtual Battery’—operating an aluminium smelter with flexible energy input. Light Metals 2016, 571–576.

    Google Scholar 

  2. Dupuis, M. (2002). Modeling power modulation. In Essential Readings in Light Metals: Volume 2 Aluminum Reduction Technology (pp. 674-678). Cham: Springer International Publishing.

    Google Scholar 

  3. Lützerath, A. (2016). High Frequency Power Modulation-TRIMET smelters provide primary control power for stabilizing the frequency in the electricity grid. Light Metals 2013, 659–662.

    Google Scholar 

  4. Haupin, W. E. (1983). Electrochemistry of the Hall-Heroult process for aluminum smelting.

    Google Scholar 

  5. Haupin, W., & Kvande, H. (2000). Thermodynamics of electrochemical reduction of alumina. In Essential Readings in Light Metals: Volume 2 Aluminum Reduction Technology (pp. 160-165). Cham: Springer International Publishing.

    Google Scholar 

  6. Kolås, S., & Støre, T. (2009). Bath temperature and AlF3 control of an aluminium electrolysis cell. Control Engineering Practice, 17(9), 1035–1043.

    Google Scholar 

  7. Wang, X., Hosler, B., & Tarcy, G. (2016). Alcoa STARprobe™. Essential Readings in Light Metals: Volume 2 Aluminum Reduction Technology, 844–850.

    Google Scholar 

  8. Wong, C. J., Yao, Y., Bao, J., Skyllas-Kazacos, M., Welch, B. J., & Jassim, A. (2019). Discretised aluminium reduction cell model for simulation and control. Chemeca, Sydney.

    Google Scholar 

  9. Urata, N., & Evans, J. (2010). The determination of pot current distribution by measuring magnetic fields. Minerals, Metals and Materials Society/AIME, 420 Commonwealth Dr., P. O. Box 430 Warrendale PA 15086 USA.[np]. 14–18 Feb.

    Google Scholar 

  10. Evans, J. W., & Urata, N. (2016). Wireless and non-contacting measurement of individual anode currents in Hall-Heroult pots; experience and benefits. Light Metals 2012, 939–942.

    Google Scholar 

  11. Yao, Y., Bao, J., Skyllas-Kazacos, M., Welch, B. J., & Jassim, A. (2021). Individual anode current monitoring during aluminum reduction cell power reduction. In Light Metals 2021: 50th Anniversary Edition (pp. 377–383). Springer International Publishing.

    Google Scholar 

  12. Shi, J., Yao, Y., Bao, J., Skyllas-Kazacos, M., Welch, B. J., Jassim, A., & Mahmoud, M. (2022). Advanced model-based estimation and control of alumina concentration in an aluminum reduction cell. JOM, 1–12.

    Google Scholar 

  13. Shi, J. (2021). Advanced Alumina Feeding Control of Aluminium Smelting Cell (Doctoral dissertation, UNSW Sydney).

    Google Scholar 

  14. Yao, Y., Cheung, C. Y., Bao, J., Skyllas-Kazacos, M., Welch, B. J., & Akhmetov, S. (2017). Estimation of spatial alumina concentration in an aluminum reduction cell using a multilevel state observer. AIChE Journal, 63(7), 2806–2818.

    Google Scholar 

  15. Huber, P. J. (1992). Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology and distribution (pp. 492–518). New York, NY: Springer New York.

    Google Scholar 

  16. Kovačević, B., Đurović, Ž., & Glavaški, S. (1992). On robust Kalman filtering. International Journal of Control, 56(3), 547–562.

    Google Scholar 

  17. Li, W., & Zhan, X. (2023). Improved robust Huber–Kalman filtering. Aerospace Systems, 6(1), 85–92.

    Google Scholar 

  18. Christopher, D. K., & Hanspeter, S. (2006, August). Comparison of several nonlinear filters for a benchmark tracking problem. In Proceedings of the AIAA Guidance, Navigation and Control Conference, Keystone, CO.

    Google Scholar 

  19. Haverkamp, R. G., & Welch, B. J. (1998). Modelling the dissolution of alumina powder in cryolite. Chemical Engineering and Processing: Process Intensification, 37(2), 177–187.

    Google Scholar 

  20. Biedler, P. (2003). Modeling of an aluminum reduction cell for the development of a state estimator. West Virginia University.

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support from ARC Research Hub for Integrated Energy Storage Solutions, and Emirates Global Aluminium Jebel Ali Operations for their technical support, especially from the Technology Development and Transfer team and Operations team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Bao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, L. et al. (2024). Estimation of the Spatial Alumina Concentration of an Aluminium Smelting Cell Using a Huber Function-Based Kalman Filter. In: Wagstaff, S. (eds) Light Metals 2024. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50308-5_59

Download citation

Publish with us

Policies and ethics