Skip to main content

Influence of Solidification Rate and Impurity Content on 5/7-Crossover Alloys

  • Conference paper
  • First Online:
Light Metals 2024 (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 1030 Accesses

Abstract

In view of an upcoming scrap wave and the need for products with lower carbon footprint, there is an urgent need to increase the recycled fraction in wrought aluminum alloys. However, due to the narrow compositional limits of conventional aluminum wrought alloys and the higher impurity levels in scrap material, the applicable recycling content is limited. Therefore, new approaches need to be identified to increase the recycled content. The introduction of the AlMgZn(Cu) Crossover alloy concept may prove to be a step forward in escaping the corset of conventional alloying systems. The 5/7-Crossover alloy not only overcomes the long-standing trade-off between the excellent formability of 5xxx-series alloys and the outstanding strength of 7xxx-series alloys by combining both properties but may also tolerate a higher content of impurity elements. The scope of this study is to properly address the 5/7-Crossover alloy’s sustainability in terms of its ability to be manufactured from secondary raw materials. AlMgZn(Cu) alloys with different tramp element concentrations were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hirsch J (2011) Aluminium in Innovative Light-Weight Car Design. Materials Transactions 52:818–824. https://doi.org/10.2320/matertrans.L-MZ201132.

    Article  CAS  Google Scholar 

  2. Hirsch J, Søreide J, Payer T (2020) Environmental Advantages of Sustainable Aluminum Structures. Proceedings of 14th International Aluminium Conference (INALCO-2019) (Environmental Advantages of Sustainable Aluminum Structures). Japan Light Metal Welding Association & Japan Aluminium Association vol. 58:125–130.

    Google Scholar 

  3. Carle D, Blount G (1999) The suitability of aluminium as an alternative material for car bodies. Materials & Design 20:267–272. https://doi.org/10.1016/S0261-3069(99)00003-5.

    Article  CAS  Google Scholar 

  4. Das SK, Green JA, Kaufman JG (2007) The development of recycle-friendly automotive aluminum alloys. JOM 57:47–51.

    Article  Google Scholar 

  5. AMAG Austria Metall AG AluReport 02 2022.

    Google Scholar 

  6. AMAG Austria Metall AG AluReport 01 2023.

    Google Scholar 

  7. Stemper L, Tunes MA, Tosone R et al. (2021) On the potential of aluminum crossover alloys. Progress in Materials Science. https://doi.org/10.1016/j.pmatsci.2021.100873.

    Article  Google Scholar 

  8. Stemper L, Tunes MA, Dumitraschkewitz P et al. (2021) Giant hardening response in AlMgZn(Cu) alloys. Acta Materialia 206:116617. https://doi.org/10.1016/j.actamat.2020.116617.

    Article  CAS  Google Scholar 

  9. Pan Y, Di Zhang, Liu H et al. (2021) Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(-Cu) alloys. Journal of Alloys and Compounds 853:157199. https://doi.org/10.1016/j.jallcom.2020.157199.

    Article  CAS  Google Scholar 

  10. Cao C, Di Zhang, Wang X et al. (2016) Effects of Cu addition on the precipitation hardening response and intergranular corrosion of Al-5.2Mg-2.0Zn (wt.%) alloy. Materials Characterization 122:177–182. https://doi.org/https://doi.org/10.1016/j.matchar.2016.11.004.

    Article  CAS  Google Scholar 

  11. Caroll MC, Mills MJ, Daehn GS et al. (2000) Effects of Zn additions on the grain boundary precipitation and corrosion of Al-5083. Scripta Materialia 42:335–340.

    Article  Google Scholar 

  12. Meng C, Di Zhang, Zhuang L et al. (2016) Correlations between stress corrosion cracking, grain boundary precipitates and Zn content of Al–Mg–Zn alloys. Journal of Alloys and Compounds 655:178–187. https://doi.org/10.1016/j.jallcom.2015.09.159.

    Article  CAS  Google Scholar 

  13. Geng Y, Di Zhang, Zhang J et al. (2020) On the suppression of Lüders elongation in high-strength Cu/Zn modified 5xxx series aluminum alloy. Journal of Alloys and Compounds 834:155138. https://doi.org/10.1016/j.jallcom.2020.155138.

    Article  CAS  Google Scholar 

  14. Geng Y, Di Zhang, Zhang J et al. (2020) Zn/Cu regulated critical strain and serrated flow behavior in Al–Mg alloys. Materials Science and Engineering: A 795:139991. https://doi.org/10.1016/j.msea.2020.139991.

    Article  CAS  Google Scholar 

  15. Løvik AN, Modaresi R, Müller DB (2014) Long-term strategies for increased recycling of automotive aluminum and its alloying elements. Environ Sci Technol 48:4257–4265. https://doi.org/10.1021/es405604g.

    Article  CAS  Google Scholar 

  16. Que Z, Wang Y, Mendis CL et al. (2022) Understanding Fe-Containing Intermetallic Compounds in Al Alloys: An Overview of Recent Advances from the LiME Research Hub. Metals 12:1677. https://doi.org/10.3390/met12101677.

    Article  CAS  Google Scholar 

  17. Que Z, Zhou Y, Wang Y et al. (2021) Effects of Mg addition on the Al6(Fe,Mn) intermetallic compounds and the grain refinement of α-Al in Al-Fe-Mn alloys. Materials Characterization 171:110758. https://doi.org/10.1016/j.matchar.2020.110758.

    Article  CAS  Google Scholar 

  18. Trink B, Weißensteiner I, Uggowitzer PJ et al. (2023) Processing and microstructure–property relations of Al-Mg-Si-Fe crossover alloys. Acta Materialia 257:119160. https://doi.org/10.1016/j.actamat.2023.119160.

    Article  CAS  Google Scholar 

  19. Engler O, Kuhnke K, Hasenclever J (2017) Development of intermetallic particles during solidification and homogenization of two AA 5xxx series Al-Mg alloys with different Mg contents. Journal of Alloys and Compounds 728:669–681. https://doi.org/10.1016/j.jallcom.2017.09.060.

    Article  CAS  Google Scholar 

  20. Schmid F, Stemper L, Ebner T et al. (2019) Industry-oriented sample preparation of 6xxx and 5xxx aluminium alloys in laboratory. Proceedings of EMC 2019.

    Google Scholar 

  21. Bartosiaki BG, Pereira JAM, Bielefeldt WV et al. (2015) Assessment of inclusion analysis via manual and automated SEM and total oxygen content of steel. Journal of Materials Research and Technology 4:235–240. https://doi.org/10.1016/j.jmrt.2015.01.008.

    Article  CAS  Google Scholar 

  22. Nuspl M, Wegscheider W, Angeli J et al. (2004) Qualitative and quantitative determination of micro-inclusions by automated SEM/EDX analysis. Anal Bioanal Chem 379:640–645. https://doi.org/10.1007/s00216-004-2528-y.

    Article  CAS  PubMed  Google Scholar 

  23. Walusinski O (2018) Doctoral Thesis. In: Walusinski O (ed) Georges Gilles de la Tourette. Oxford University Press, pp 129–144.

    Chapter  Google Scholar 

  24. Corti CW, Cotterill P, Fitzpatrick GA (1974) The Evaluation of the Interparticle Spacing in Dispersion Alloys. International Metallurgical Reviews 19:77–88. https://doi.org/10.1179/imtlr.1974.19.1.77.

    Article  CAS  Google Scholar 

  25. Bale CW, Chartrand P, Degterov SA et al. (2002) FactSage thermochemical software and databases. Calphad 26:189–228. https://doi.org/10.1016/S0364-5916(02)00035-4.

    Article  CAS  Google Scholar 

  26. Ostermann F (2007) Anwendungstechnologie Aluminium, 2nd edn. Springer, Berlin Heidelberg.

    Book  Google Scholar 

  27. Belov NA, Aksenov AA, Eskin DG (2002) Iron in Aluminium Alloys. CRC Press, London.

    Book  Google Scholar 

  28. Liu Y, Luo L, Han C et al. (2016) Effect of Fe, Si and Cooling Rate on the Formation of Fe- and Mn-rich Intermetallics in Al–5Mg–0.8Mn Alloy. Journal of Materials Science & Technology 32:305–312. https://doi.org/10.1016/j.jmst.2015.10.010.

    Article  CAS  Google Scholar 

  29. Závodská D, Tillová E, Švecová I et al. (2019) The Effect of Iron Content on Microstructure and Porosity of Secondary AlSi7Mg0.3 Cast Alloy. Period Polytech Transp Eng 47:283–289. https://doi.org/10.3311/PPtr.12101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Samberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samberger, S., Stemper, L., Uggowitzer, P.J., Tosone, R., Pogatscher, S. (2024). Influence of Solidification Rate and Impurity Content on 5/7-Crossover Alloys. In: Wagstaff, S. (eds) Light Metals 2024. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50308-5_28

Download citation

Publish with us

Policies and ethics