Skip to main content

Creative Approaches to Long-Term Recycling of Aluminium Scrap Forming AlSiMgMnCu Alloy with Excellent Mechanical and Microstructural Properties

  • Conference paper
  • First Online:
Light Metals 2024 (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 1110 Accesses

Abstract

The present research focuses on the recycling of various aluminium scraps that contain significant levels of silicon, iron, manganese, and copper to create a new aluminium alloy with superior properties. The alloy was designed to exhibit high extrudability and mechanical properties. The alloy was extruded at a low temperature of 430 °C, resulting in a good yield and form free of extrusion flaws. The produced alloy was characterized in three sets: Set 1 without aging (0 h), Set 2. with different aging times (3, 4, and 5 h) at 185 °C, and Set 3. with heat treatment and different aging times (3 h., 4 h., and 5 h.). The mechanical, electrical, and microstructural properties of each set were investigated. The samples in Set 1. had poor mechanical properties but high ductility due to the presence of Cu-enriched intermetallic as the dominant phase. Set 2 samples had the best mechanical properties while preserving high ductility, which was due to the synergy between α-Al (FeMn) Si, Cu-enriched intermetallic, spheroidal AlCuMgSi, and modified silicon particles. Set 3. samples underwent heat treatment at an elevated temperature (530 °C for 3 h) with rapid quenching, then aged for varying times and quenched rapidly, this led to the dissolution of the Cu-enriched intermetallic except for the AlMgCu phase with (Al96Mg3Cu1 and Al94Mg5Cu1, at. %), and the dominant phase was α-Al (FeMn) Si phase, which improved mechanical characteristics. Overall, the ASH01 alloy produced in Set 2 conditions is a promising alloy with strong mechanical characteristics and ductility as a recycled Al-scrap alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milford, R. L., Allwood, J. M., & Cullen, J. M. (2011). Assessing the potential of yield improvements, through process scrap reduction, for energy and CO2 abatement in the steel and aluminium sectors. Resources, Conservation and Recycling, 55(12), 1185–1195. https://doi.org/10.1016/j.resconrec.2011.05.021.

  2. Haraldsson, J., Johansson, M.T. Effects on primary energy use, greenhouse gas emissions and related costs from improving energy end-use efficiency in the electrolysis in primary aluminium production. Energy Efficiency 13, 1299–1314 (2020). https://doi.org/10.1007/s12053-020-09893-1

  3. Samuel, M. (2003). A new technique for recycling aluminium scrap. Journal of Materials processing technology, 135(1), 117–124.

    Google Scholar 

  4. A. Wagiman, M.S. Mustapa, R. Asmawi, S. Shamsudin, M.A. Lajis, Y. Mutoh, A review on direct hot extrusion technique in recycling of aluminium chips, Int. J. Adv. Manuf. Tech. 106 (2020) 641.

    Google Scholar 

  5. G. Gaustad, E. Olivetti, R. Kirchain, Improving aluminum recycling: a survey of sorting and impurity removal technologies, Resour. Conserv. Recycl. 58 (2012) 79.

    Google Scholar 

  6. Luo, K., Wang, Z., Meng, L., & Guo, Z. (2022). Removal of iron for aluminum recovery from scrap aluminum alloy by supergravity separation with manganese addition. Chemical Engineering and Processing-Process Intensification, 173, 108841.

    Google Scholar 

  7. Tabereaux, A. T., & Peterson, R. D. (2014). Aluminum production. In Treatise on Process Metallurgy (pp. 839–917). Elsevier.

    Google Scholar 

  8. Haraldsson, J., & Johansson, M. T. (2018). Review of measures for improved energy efficiency in production-related processes in the aluminium industry–From electrolysis to recycling. Renewable and Sustainable Energy Reviews, 93, 525–548.

    Google Scholar 

  9. E.A. Starke, J.T. Staley, Application of modern aluminum alloys to aircraft, Progress in Aerospace Sciences. 32 (1996) 131–172. https://doi.org/10.1016/0376-0421(95)00004-6.

  10. Y. Komatsu, T. Arai, H. Abe, M. Sato, Y. Nakazawa, Application of Aluminum for Automobile Chassis Parts, SAE Technical Paper, 1991.

    Google Scholar 

  11. M. Skillingberg, J. Green, Aluminum applications in the rail industry, LIGHT METAL AGE-CHICAGO-. 65 (2007) 8.

    Google Scholar 

  12. J. Hirsch, Aluminium Alloys for Automotive Application, Materials Science Forum. 242 (1997) 33–50. https://doi.org/10.4028/www.scientific.net/MSF.242.33.

  13. Taha, G. M., Aadli, A. S., Ebnalwaled, A. A. (2020). Recovery of Aluminium Metal Using Ultrasonic Technique and Production of Al–Si Hypereutectic Alloys from 6063 Alloy’s Black Dross Using Silicon Lumps and Flux. In Light Metals 2020 (pp. 1128–1136). Springer, Cham.

    Google Scholar 

  14. U.G. Gang, S.H. Lee, W.J. Nam, The Evolution of Microstructure and Mechanical Properties of a 5052 Aluminium Alloy by the Application of Cryogenic Rolling and Warm Rolling, Materials Transactions. 50 (2009) 82–86. https://doi.org/10.2320/matertrans.MD200801.

  15. K. Dudzik, M. Czechowski, Analysis of possible shipbuilding application of friction stir welding (FSW) method to joining elements made of AlZn5Mg1 alloy, Polish Maritime Research. 16 (2009) 38–40. https://doi.org/10.2478/v10012-008-0054-0.

  16. T. Soga, T. Ishida, K. Miura, H. Hata, M. Okamoto, T. Nakatsuka, Product using Zn-Al alloy solder, US6563225B2, 2003. https://patents.google.com/patent/US6563225B2/en (accessed July 9, 2020).

  17. K. Schmidtke, F. Palm, A. Hawkins, C. Emmelmann, Process and Mechanical Properties: Applicability of a Scandium modified Al-alloy for Laser Additive Manufacturing, Physics Procedia. 12 (2011) 369–374. https://doi.org/10.1016/j.phpro.2011.03.047.

  18. Wang, B., Zhang, Z., Xu, G., Zeng, X., Hu, W., & Matsubae, K. (2023). Wrought and cast aluminum flows in China in the context of electric vehicle diffusion and automotive lightweighting. Resources, Conservation and Recycling, 191, 106877.

    Google Scholar 

  19. Gesing, A. (2004). Assuring the continued recycling of light metals in end-of-life vehicles: A global perspective. JOM, 56(8), 18–27

    Google Scholar 

  20. Raabe, D. (2023). The Materials Science behind Sustainable Metals and Alloys. Chemical Reviews, 123(5), 2436–2608.

    Google Scholar 

  21. Pedneault, J., Majeau‐Bettez, G., & Margni, M. (2023). How much sorting is required for a circular low carbon aluminum economy? Journal of Industrial Ecology.

    Google Scholar 

  22. Koyanaka, S., & Kobayashi, K. (2011). Incorporation of neural network analysis into a technique for automatically sorting lightweight metal scrap generated by ELV shredder facilities. Resources, conservation and recycling, 55(5), 515–523.

    Google Scholar 

  23. Capuzzi, S., & Timelli, G. (2018). Preparation and melting of scrap in aluminum recycling: A review. Metals, 8(4), 249.

    Google Scholar 

  24. Hatayama, H., Daigo, I., Matsuno, Y., & Adachi, Y. (2012). Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology. Resources, Conservation and Recycling, 66, 8–14.

    Google Scholar 

  25. D. Ma, M. Freak, J. von Pezold, D. Raabe, J. Neugebauer, Ab initio identified design principles of solid solution strengthening in Al, Science and Technology of Advanced Materials. 14 (2013) 025001. https://doi.org/10.1088/1468-6996/14/2/025001.

  26. R. Parvizi, R.K.W. Marceau, A.E. Hughes, M.Y. Tan, M. Forsyth, Atom Probe Tomography Study of the Nanoscale Heterostructure around an Al20Mn3Cu2 Dispersoid in Aluminum Alloy 2024, Langmuir. 30 (2014) 14817–14823. https://doi.org/10.1021/la503418u.

  27. Y. Li, S. Brusethaug, A. Olsen, Influence of Cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment, Scripta. Mater. 4(2006) 99–103. https://doi.org/10.1016/j.scriptamat.2005.08.044.

  28. L. Zuo, B. Ye, J. Feng, X. Kong, H. Jiang, W. Ding, Microstructure, tensile properties and creep behavior of Al-12Si-3.5Cu-2Ni-0.8Mg alloy produced by different casting technologies. J. Mater. Sci. Technol. 34 (2018) 164–170. https://doi.org/10.1016/j.jmst.2017.06.011.

  29. G. Wang, Q. Sun, L. Feng, L. Hui, C. Jing, Influence of Cu content on aging behavior of AlSiMgCu cast alloys, Mater. Des. 28 (2007) 1001–1005. https://doi.org/10.1016/j.matdes.2005.11.015.

  30. C. Wu, S. Lee, M. Hsieh, J. Lin, Effects of Cu content on microstructure and mechanical properties of Al-14.5Si-0.5Mg alloy, Mater. Charact. 61 (2010) 1074–1079. https://doi.org/10.1016/j.matchar.2010.06.022.

  31. M.S. Salleh, M.Z. Omar, Influence of Cu content on microstructure and mechanical properties of thixoformed Al-Si-Cu-Mg alloys, Trans. Nonferrous Met. Soc. China, 25 (2015) 3523–3538.

    Google Scholar 

  32. X. Dong, H. Yang, X. Zhu, S. Ji, High strength and ductility aluminium alloy processed by high pressure die casting, J. Alloys Compd. 773 (2019) 86–96. https://doi.org/10.1016/j.jallcom.2018.09.260.

  33. I.N. Fridlyander, V.G. Sister, O.E. Grushko, V.V. Berstenev, L.M. Sheveleva, L.A. Ivanova, Aluminum Alloys: Promising Materials in the Automotive Industry, Metal Science and Heat Treatment. 44 (2002) 365–370. https://doi.org/10.1023/A:1021901715578.

  34. X. Li, B. Bhushan, K. Takashima, C.-W. Baek, Y.-K. Kim, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy. 97 (2003) 481–494. https://doi.org/10.1016/S0304-3991(03)00077-9.

  35. E. Romhanji, M. Popovic, Problems and prospect of Al-Mg alloys application in marine constructions, Journal of Metallurgy. 12 (2006) 297–307.

    Google Scholar 

  36. N. Li, M.L. Taheri, H. Wang, J. Wang, and M. Nastasi, Prog. Mater Sci. 96, 217 (2018).

    Google Scholar 

  37. A.S. Budiman, K.R. Narayanan, N. Li, J. Wang, N. Tamura, M. Kunz, and A. Misra, Mater. Sci. Eng., A 635, 6 (2015).

    Google Scholar 

  38. N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scripta Mater. 63, 363 (2010).

    Google Scholar 

  39. Wang, S. J., Xie, D. Y., Wang, J., & Misra, A. (2021). Deformation behavior of nanoscale Al–Al2Cu eutectics studied by in situ micropillar compression. Materials Science and Engineering: A, 800, 140311.

    Google Scholar 

  40. Okayasu, M., Sato, R., & Takasu, S. (2012). Effects of anisotropic microstructure of continuous cast Al–Cu eutectic alloys on their fatigue and tensile properties. International journal of fatigue, 42, 45–56.

    Google Scholar 

  41. Chanda, T., & Murty, G. S. (1992). Plastic behavior of CuAl 2. Journal of materials science, 27, 5931–5934.

    Google Scholar 

  42. Bertarelli, H. R., & Biloni, H. (1972). Structure and heat treatment influence on the tensile properties of Al-Al 2 Cu eutectic composites. Metallurgical and Materials Transactions B, 3, 73–82.

    Google Scholar 

  43. Lawson, W. H. S., & Kerr, H. W. (1971). Mechanical behavior of rapidly solidified Al-Al 2 Cu and Al-Al 3 Ni composites. Metallurgical Transactions, 2, 2853–2859.

    Google Scholar 

  44. Jabczynski, F. S. J., & Cantor, B. (1981). The solidification and mechanical properties of chill-cast AI-AI 3 IMi and AI-AI 2 Cu eutectic alloys. Journal of Materials Science, 16, 2269–2280.

    Google Scholar 

  45. Cantor, B., & Chadwick, G. A. (1975). The tensile deformation of unidirectionally solidified Al-Al 3 Ni and Al-Al 2 Cu eutectics. Journal of Materials Science, 10, 578–588.

    Google Scholar 

  46. Park, J. M., Mattern, N., Kühn, U., Eckert, J., Kim, K. B., Kim, W. T., & Kim, D. H. (2009). High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity. Journal of Materials Research, 24(8), 2605–2609.

    Google Scholar 

  47. Lei, Q., Ramakrishnan, B. P., Wang, S., Wang, Y., Mazumder, J., & Misra, A. (2017). Structural refinement and nanomechanical response of laser remelted Al-Al2Cu lamellar eutectic. Materials Science and Engineering: A, 706, 115–125.

    Google Scholar 

  48. Mujumdar, S., Thakur, M. S. H., Islam, M., Mahboob, M., & Mo talab, M. (2021). Numerical investigation of mechanical properties of aluminum-copper alloys at nanoscale. Journal of Nanoparticle Research, 23(1), 1–20.

    Google Scholar 

  49. Lombardi, A., Sediako, D., Ravindran, C., & Barati, M. (2019). Analysis of precipitation, dissolution and incipient melting of Al2Cu in B206 Al alloy using in-situ neutron diffraction. Journal of Alloys and Compounds, 784, 1017–1025.

    Google Scholar 

  50. Zhang, Y., Li, R., Chen, P., Li, X., & Liu, Z. (2019). Microstructural evolution of Al2Cu phase and mechanical properties of the large-scale Al alloy components under different consecutive manufacturing processes. Journal of Alloys and Compounds, 808, 151634.

    Google Scholar 

  51. Shilvock, W. D. (1995). The effect of alloy and impurity variation on the treatment, casting and physical properties of aluminium-silicon eutectic alloys.

    Google Scholar 

  52. Farkoosh, A. R. (2015). Development of creep-resistant Al-Si cast alloys strengthened with nanoscale dispersoids. McGill University (Canada).

    Google Scholar 

  53. Samolada, M. C., & Zabaniotou, A. A. (2014). Energetic valorization of SRF in dedicated plants and cement kilns and guidelines for application in Greece and Cyprus. Resources, Conservation and Recycling, 83, 34–43.‏

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, formal analysis, data curation, writing—original draft preparation, Ahmed S. Aadli; supervision, writing—review and editing, visualization, Safaa El-Nahas; supervision and reviewing, Hassan M. Salman. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ahmed S. Aadli .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Nahas, S., Aadli, A.S., Salman, H.M. (2024). Creative Approaches to Long-Term Recycling of Aluminium Scrap Forming AlSiMgMnCu Alloy with Excellent Mechanical and Microstructural Properties. In: Wagstaff, S. (eds) Light Metals 2024. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50308-5_25

Download citation

Publish with us

Policies and ethics