Skip to main content

Sc-Containing Al–Si–Mg (6xxx) Alloys for Automotive Extrusions

  • Conference paper
  • First Online:
Light Metals 2024 (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 1011 Accesses

Abstract

Our work focuses on improving the manufacturability and performance of Al–Si–Mg 6xxx series alloys for structural automotive components. Scandium is the most potent strengthening element in aluminum alloys but interactions between Sc and Si have limited the use of Sc in high Si-containing alloys (6xxx). We demonstrate modified heat treatment schedules for precipitation of potent Sc-containing dispersoids, which are stable during extrusion and processing. Trace scandium additions increase strength and tear resistance in lightly alloyed 6xxx alloys and reduce extrusion and heat-treating costs relative to alloys with comparable strength and tear resistance. In one example, an Al–0.5Si–0.5Mg alloy with an 0.09 wt% Sc addition increased T6 yield strength from 276 to 372 MPa with ductility only decreasing from 21 to 18%. The role of casting and homogenization on precipitation of these stable Sc-containing dispersoids will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Keller, “Ford F150,” presented at the EuroCarBody 2015, Bad Nauheim, Germany, Oct. 21, 2015.

    Google Scholar 

  2. L. B. Chappuis, “Aluminum Recycling and the 2015 Ford F-150,” Light Met. Age, vol. 73, pp. 16–18, 2015.

    Google Scholar 

  3. J. Hirsch, “Aluminium Alloys for Automotive Application,” Mater. Sci. Forum, vol. 242, pp. 33–50, Jan. 1997, https://doi.org/10.4028/www.scientific.net/MSF.242.33.

  4. R. Modaresi, A. N. Løvik, and D. B. Müller, “Component- and Alloy-Specific Modeling for Evaluating Aluminum Recycling Strategies for Vehicles,” JOM, vol. 66, no. 11, pp. 2262–2271, Nov. 2014, https://doi.org/10.1007/s11837-014-0900-8.

  5. A. Poznak, D. Freiberg, and P. Sanders, “Chapter 10 - Automotive Wrought Aluminium Alloys,” in Fundamentals of Aluminium Metallurgy, R. N. Lumley, Ed., in Woodhead Publishing Series in Metals and Surface Engineering, Woodhead Publishing, 2018, pp. 333–386. https://doi.org/10.1016/B978-0-08-102063-0.00010-2.

  6. N. Parson, J. Fourmann, and J.-F. Beland, “Aluminum Extrusions for Automotive Crash Applications,” in SAE Technical Papers, Detroit, MI, United states, 2017, p. ADIENT; et al.; HITACHI; Mentor Automotive; OMRON; Southwest Research Institute (SwRI)-. [Online]. Available: https://doi.org/10.4271/2017-01-1272.

  7. N. C. Parson, J.-F. Béland, J. Fourmann, and P. Rometsch, “Effect of Press Quench Rate on Automotive Extrusion Performance,” p. 19.

    Google Scholar 

  8. W. J. Poole, Z. Zhang, M. M. Arani, N. C. Parson, and M. Li, “The Effect of Press Quench Rate on Grain Boundary Precipitation and Fracture of 6xxx-Series Alloys,” p. 13.

    Google Scholar 

  9. S. Babaniaris, M. Ramajayam, T. J. Langan, and T. Dorin, “The Effect of Scandium and Zirconium on the Strength to Extrudability Trade-Off in Al-Mg-Si Alloys”.

    Google Scholar 

  10. V. I. Elagin, V. V. Zakharov, and T. D. Rostova, “Scandium-alloyed aluminum alloys,” Met. Sci. Heat Treat., vol. 34, no. 1, pp. 37–45, Jan. 1992, https://doi.org/10.1007/BF00768707.

  11. L. S. Toropova, D. G. Eskin, M. L. Kharakterova, and T. V. Dobatkina, Advanced Aluminum Alloys Containing Scandium: Structure and Properties. Baikov Institute of Metallurgy, Moscow, Russia: Taylor and Francis Publishers, London, UK, 1998.

    Google Scholar 

  12. V. V. Zakharov, “Special features of crystallization of scandium-alloyed aluminum alloys,” Met. Sci. Heat Treat., vol. 53, no. 9, pp. 414–419, Jan. 2012, https://doi.org/10.1007/s11041-012-9408-4.

  13. V. V. Zakharov and I. A. Fisenko, “Some Principles of Alloying of Aluminum Alloys with Scandium and Zirconium in Ingot Production of Deformed Semiproducts,” Met. Sci. Heat Treat., vol. 61, no. 3, pp. 217–221, Jul. 2019, https://doi.org/10.1007/s11041-019-00403-4.

  14. V. V. Zakharov, “Prospects of Creation of Aluminum Alloys Sparingly Alloyed with Scandium,” Met. Sci. Heat Treat., vol. 60, no. 3, pp. 172–176, Jul. 2018, https://doi.org/10.1007/s11041-018-0256-8.

  15. V. V. Zakharov and T. D. Rostova, “Hardening of Aluminum Alloys Due to Scandium Alloying,” Met. Sci. Heat Treat., vol. 55, no. 11, pp. 660–664, Mar. 2014, https://doi.org/10.1007/s11041-014-9686-0.

  16. V. V. Zakharov and T. D. Rostova, “High-Strength Weldable Alloy 1970 Based on the Al - Zn - Mg System,” Met. Sci. Heat Treat., vol. 47, no. 3, pp. 131–138, Mar. 2005, https://doi.org/10.1007/s11041-005-0041-3.

  17. V. V. Zakharov and T. D. Rostova, “On the possibility of scandium alloying of copper-containing aluminum alloys,” Met. Sci. Heat Treat., vol. 37, no. 2, pp. 65–69, Feb. 1995, https://doi.org/10.1007/BF01157047.

  18. J. Röyset, “SCANDIUM IN ALUMINIUM ALLOYS OVERVIEW: PHYSICAL METALLURGY, PROPERTIES AND APPLICATIONS,” 2007.

    Google Scholar 

  19. V. I. Yelagin, V. V. Zakharov, S. G. Pavlenko, and T. D. Rostova, “Influence of Zirconium Additions on Ageing of Aluminium-Scandium Alloys,” Phys. Met. Metallogr., vol. 60, no. 1, pp. 88–92, 1985.

    Google Scholar 

  20. V. V. Zakharov, “Stability of the solid solution of scandium in aluminum,” Met. Sci. Heat Treat., vol. 39, no. 2, pp. 61–66, Feb. 1997, https://doi.org/10.1007/BF02467664.

  21. J. Røyset, H. Hovland, and N. Ryum, “An Investigation of Dilute Al-Sc-Si Alloys,” Mater. Sci. Forum, vol. 396–402, pp. 619–624, 2002, https://doi.org/10.4028/www.scientific.net/MSF.396-402.619.

  22. C. Booth-Morrison, “Role of silicon in accelerating the nucleation of Al3(ScZr) Precipitates in dilute Al-Sc-Zr alloys,” Acta Mater., 2012.

    Google Scholar 

  23. O. Beeri, D. C. Dunand, and D. N. Seidman, “Roles of impurities on precipitation kinetics of dilute Al–Sc alloys,” Mater. Sci. Eng. A, vol. 527, no. 15, pp. 3501–3509, Jun. 2010, https://doi.org/10.1016/j.msea.2010.02.027.

  24. G. Du, J. Deng, Y. Wang, D. Yan, and L. Rong, “Precipitation of (Al,Si)3Sc in an Al–Sc–Si alloy,” Scr. Mater., vol. 61, pp. 532–535, Sep. 2009, https://doi.org/10.1016/j.scriptamat.2009.05.014.

  25. T. Dorin, “EFFECTS OF Mg, Si, AND Cu ON THE FORMATION OF THE Al3Sc/Al3Zr DISPERSOIDS,” 16th Int. Alum. Alloy Conference, 2018.

    Google Scholar 

  26. V. G. Davydov, T. D. Rostova, V. V. Zakharov, Yu. A. Filatov, and V. I. Yelagin, “Scientific principles of making an alloying addition of scandium to aluminium alloys,” Mater. Sci. Eng. A, vol. 280, no. 1, pp. 30–36, Mar. 2000, https://doi.org/10.1016/S0921-5093(99)00652-8.

  27. Z. Yin, Q. Pan, Y. Zhang, and F. Jiang, “Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys,” Mater. Sci. Eng. A, vol. A280, pp. 151–155, 2000.

    Google Scholar 

  28. Suyitno, W. H. Kool, and L. Katgerman, “Finite element method simulation of mushy zone behavior during direct-chill casting of an Al-4.5 pct Cu alloy,” Metall. Mater. Trans. A, vol. 35, no. 9, pp. 2917–2926, Sep. 2004, https://doi.org/10.1007/s11661-004-0239-9.

  29. J. E. Hatch, Aluminum: Properties and Physical Metallurgy. ASM International, 1984.

    Google Scholar 

  30. S. L. Lee, J. K. Chang, Y. C. Cheng, K. Y. Lee, and W. C. Chen, “Effects of scandium addition on electrical resistivity and formation of thermal hillocks in aluminum thin films,” THIN SOLID FILMS, 2011, Accessed: Oct. 13, 2023. [Online]. Available: http://ir.lib.ncu.edu.tw/handle/987654321/50010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Sanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shomali, A., Langan, T., Wood, T., Sanders, P. (2024). Sc-Containing Al–Si–Mg (6xxx) Alloys for Automotive Extrusions. In: Wagstaff, S. (eds) Light Metals 2024. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50308-5_140

Download citation

Publish with us

Policies and ethics